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Summary

The solar magnetic field significantly influences and structures the solar coronal plasma
as magnetic forces are the dominant forces within the solar corona. Therefore, an in-
depth understanding of the phenomena that occur there requires the best possible de-
scription of the coronal magnetic field. Prominent instances of such phenomena include
solar flares, which are abrupt discharges of electromagnetic energy observed through the
whole electromagnetic spectrum. Solar flares can unleash as much energy as a billion
atomic bombs in just a matter of minutes. Other crucial phenomena are coronal mass
ejections (CMEs), colossal solar storms that explosively move vast clouds of hot, magne-
tized plasma-comprising electrons, protons, and atomic nuclei into interplanetary space
at speeds that can exceed several million miles per hour. Lastly, there’s the solar wind, a
continuous outflow of charged particles, primarily electrons and protons. These particles,
streaming along the Sun’s highly dynamic magnetic field, permeate the solar system at
speeds ranging from 250 to 750 kilometers per second. These phenomena serve as the
primary engines behind space weather. They lead to beautiful displays such as the au-
roras we observe on Earth caused by solar particles colliding with Earth’s atmospheric
gases. However, these solar events can also provoke catastrophic consequences. These
include disruptions to telecommunications and satellite operations, and profound effects
on critical infrastructure such as power grids. When severe, these disruptions can lead to
extensive power outages and satellite failures, underscoring the importance of monitoring
and understanding these dynamic solar processes.

Although direct, regular measurements of the coronal magnetic field aren’t accessible
yet, we can study its structure and dynamics by extrapolating the photospheric vector-field
measurements into the corona. This thesis particularly discusses global coronal structures,
typically modeled using spherical grids because of the spherical geometry present on the
Sun and synoptic vector magnetograms as the boundary conditions.

We have developed a new numerical code that facilitates nonlinear force-free magnetic-
field extrapolations in spherical geometry. This code is based on a well-tested optimiza-
tion principle that has been successfully applied to a Cartesian grid and a single spherical
finite-difference grid. This is the first instance where the algorithm can reconstruct the
magnetic field across the entire corona, encompassing the polar regions.

The previous versions of this spherical code experienced numerical inefficiencies due
to the convergence of these grids at the solar polar regions. The new code has incor-
porated the so-called Yin-Yang overhead grid, which effectively tackles this issue. As
a result, both the speed and accuracy of the optimization algorithm have been enhanced
relative to the earlier versions. We validate our new code using a widely recognized
semi-analytical model, the Low and Lou solution, which is often used as a standard to
test nonlinear force-free extrapolation codes. We then use vector synoptic magnetograms
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Summary

provided by the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Ob-
servatory (SDO) as a boundary condition for our model and reconstruct the global coronal
magnetic field. We chose to study the performance of our model during two periods of
significantly different solar activity: one during solar maximum activity and one during
solar minimum activity. We compare the resulting field lines with relevant observations to
further investigate the quality of our solutions. We then discuss the possible applications
of our code and what research questions we could address with this newly developed tool.
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1 Introduction

1.1 The solar structure

When looking at the Sun, although it is not recommended to look directly at it, our eyes
register the photons within the visible electromagnetic spectrum that manage to travel
through interplanetary space to Earth’s surface. The layer of the Sun that is visible to
our naked eye is called the photosphere. The Sun is divided into several spherical layers.
Below the photosphere is the convection zone, which extends from 70% of the solar radius
to the solar surface. The temperature difference between the inner and outer boundaries is
such that it provides the conditions for the existence of thermal currents. This is the part
of the Sun where large and small-scale flows generate the solar magnetic field before it
surfaces to the photosphere. See the review article by Featherstone and Hindman (2020)
for a more detailed discussion on the convection zone.

Going even deeper into the solar structure, we find the radiation zone, which extends
from the outer boundary of the convection zone to around 20% of the solar radius. The
temperature in the radiation zone is 1.5 to 2 million K and consequently the plasma is
highly ionized. Therefore, there are many free electrons that scatter photons. This high
density of scatterers is responsible for the long time (thousands to millions of years) it
takes photons to travel through the radiation region (see Gough 2017, for details). The
core is the central region of the Sun, extending from the solar center to about 20 % of the
solar radius. It is an incredibly hot and dense region, with temperatures around from 15
million Kelvin and densities around 150 times that of water. The high temperature and
pressure in the core allow for nuclear fusion to occur, which is the process of combining
atomic nuclei to form heavier elements and releasing energy during the process.

In the core of the Sun, nuclear fusion primarily involves the fusion of four hydro-
gen nuclei, or protons, into a single helium nucleus. This process releases an enormous
amount of energy in the form of gamma rays, which then gradually convert into other
forms of energy as they move outwards through the Sun’s layers.

The process of fusion in the core is facilitated by the high temperatures and densities
present there. At these extreme conditions, the kinetic energy of the protons is high
enough to overcome their mutual electrostatic repulsion and get close enough for the
strong nuclear force to bind them together. This results in the formation of a helium
nucleus, two neutrinos, and an enormous amount of energy.

However, nuclear fusion is not a simple process and requires a delicate balance be-
tween the temperature, density, and composition of the material in the core. If the tem-
perature and pressure are too low, fusion reactions will not occur efficiently enough to
sustain the Sun’s energy output. Conversely, if the temperature and pressure are too high,
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1 Introduction

the core will expand and cool, reducing the rate of fusion and leading to a decrease in
energy production. This process, which is an instance of nuclear fusion, is what "makes
the star alive" in the sense that it provides the thermal energy that sets into motion the
solar radiation, the thermal currents, and defines the parameters of the stellar structure.

The layers above the photosphere are not usually visible with the naked eye because
the number of photons is a lot lower than the one coming from the photosphere, and we
cannot distinguish the lower luminosity source because of its proximity to a much brighter
one. One instance when the solar atmosphere is visible is during a total solar eclipse.
The solar atmosphere includes four different regions: the photosphere, the chromosphere,
the transition region, and the corona. The chromosphere, when observed, is typically
shown with a red color because of the strong emission in the Hα spectral line. The word
chromosphere (from the Greek chroma=color) literally means the sphere of color.

The height of the chromosphere varies between 3 000 to 5 000 kilometers, with a den-
sity that drops exponentially from 2× 10−4 kg/m3 to 1.6× 10−11 kg/m3, and a temperature
that also decreases from 6 000 K to 3 800 K. The chromosphere is a region of the Sun
where different dynamic phenomena are observed, such as plunges, spicules, cool loops,
and chromospheric oscillations. See Klimchuk (2019) for a discussion about the structure
and dynamics of the chromosphere.

Above the chromosphere, the next solar region is the transition region, a region where
the physical characteristics of the solar atmosphere change dramatically in a very short
distance when going from the chromosphere to the solar corona, which is the outermost
layer of the solar atmosphere. Below the transition region, the structure of the Sun is
defined by the gravitational forces in a way that makes it possible to separate into different
layers. Above the transition region, the electromagnetic forces are dominant, increasing
the complexity of the structure and dynamics.

Below the transition region, the ionization degree of helium molecules is relatively
low, resulting in effective electromagnetic emission, while above the transition region, the
helium is entirely ionized. When the helium molecules are fully ionized, they have no
electrons and are not able to cool down using the electron transition mechanism. There-
fore, above the transition region, the material remains orders of magnitude hotter.

Below the transition region, the spectral lines that are formed belong to the visible,
infrared, and close to the ultraviolet range, while above the transition region, the lines are
found in the extreme ultraviolet, hard and soft X-rays. The radiative transfer within the
transition region is a highly complex problem due to the contribution of all the different
physical processes that interplay in such a small spatial scale. Tian (2018) includes a great
overview of the physics of the transition region.

The outermost region of the solar atmosphere is the solar corona. The dynamics and
structure of the solar corona are dominated by the presence of the magnetic field, as the
magnetic forces are stronger than all other forces. A quantity that is generally used to
express the dominance of the magnetic forces is the plasma β, defined as

β =
p

B2/2µ0
, (1.1)

where p is the gas pressure, B is the magnetic field, and µ0 is the vacuum permeability.
By definition, when the plasma β is well below unity, the magnetic forces play the most
important role in the plasma dynamics. As shown in Gary (2001), β is below unity in the
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1.2 Different coronal field extrapolation methods

solar corona below about 2.5 solar radii.
The plasma in the corona is much hotter than the rest of the atmosphere, with temper-

atures ranging from 1 to 3 million Kelvin, which is about 3 orders of magnitude hotter
than the photosphere. This is counterintuitive, as one would expect the temperature to
drop monotonically with respect to distance from the heat source, which is the case for
the solar interior. However, in the solar atmosphere, the magnetic field effects make the
dynamics more complicated. This paradox is known as the coronal heating problem and
is one of the open problems in solar and stellar astrophysics.

There are different mechanisms that could potentially explain how energy is trans-
ported into the corona. Two of the most supported ones by the scientific community are
the alternating current heating models (AC) firstly proposed in Carlqvist (1977) and the
direct current heating models (DC). The former is based on the observation that MHD
waves observed in the corona (Tomczyk et al. 2007) can dissipate some of their energy
in the form of heating, while the latter explains the heating with the existence of currents
because of magnetic field motions (see Klimchuk (2015) for more details). Both of these
proposed mechanisms show the importance of understanding the structure of the coronal
magnetic field.

Other phenomena that take place in the corona are solar flares, sudden bursts of elec-
tromagnetic energy that can be observed from radio to hard X-rays. Very often, solar
flares are accompanied by coronal mass ejections, gaseous explosions that could send
coronal material to the interplanetary space, see Shibata and Magara (2011). The solar
wind is a stream of charged particles, mainly protons and electrons, that flows continu-
ously outward from the Sun in all directions. The high temperature of the coronal plasma,
which can reach up to several million degrees, causes particles to escape the sun’s gravita-
tional field and form the solar wind. The structure of the coronal magnetic field strongly
influences the solar wind, as the charged particles are guided along the magnetic field
lines. The solar wind can have a significant impact on the Earth’s environment, affecting
our planet’s magnetic field and causing auroras, as well as posing a potential hazard to
spacecraft and communication systems. Understanding the solar wind and its variability
is therefore an important area of research in solar physics. For a detailed discussion on
the solar wind see Cranmer (2019). The content presented in this section can be found in
Stix (2004).

1.2 Different coronal field extrapolation methods

In Section 1.1, the crucial role of the magnetic field in modeling the solar corona is dis-
cussed. In regions where the magnetic forces dominate the behavior of the plasma, such as
in the corona, the physical phenomena are primarily of electromagnetic nature. Therefore,
for accurate modeling of the phenomena in the solar corona, a precise and comprehen-
sive description of the magnetic field is of utmost importance. Unfortunately, measuring
the coronal magnetic field is really challenging. In Liu and Lin (2008) the authors at-
tempted to compare directly measured magnetic field in the corona with potential field
extrapolation. It is emphasized that this method is subject to various limitations such as
the uncertainty regarding the point of the coronal emission and the need to use empirical
analytical models for the structure of the solar atmosphere. Measuring the magnetic field
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1 Introduction

Figure 1.1: Solar eclipse observed in Portland, USA, on August 21, 2017. Courtesy:
Pradeep L. Chitta

in the corona poses a significant challenge.
Despite these limitations, this study provides valuable insights into the complexities

of measuring the magnetic field in the corona. These limitations make this kind of mea-
surements a difficult tool in both modeling and validating coronal magnetic field models.
Measuring the magnetic field in the lower parts of the solar atmosphere is an easier task
that has been successfully performed during the last decades, in 1960s for the photo-
sphere by Babcock (1961) and in the 1970s by Svalgaard et al. (1978). Chromospheric
measurements were also first performed in the eighties (Jones 1985). EUV observations,
although they are not able to provide the strength of the magnetic field, they can reveal the
3D structure of coronal loops and thus the direction of the magnetic-field vectors. A 3D
reconstruction is possible when there are available observations from multiple points that
can be used to look into a particular structure. For example, a stereoscopic method pre-
sented in Wiegelmann and Neukirch (2002) can be used to reconstruct the 3D geometry
of loops in active regions. The basic assumption that enables the use of the EUV im-
ages for tracking magnetic loops is the fact that because of the low plasma β the plasma
particles are guided along the magnetic field lines. As the thermal conductivity is much
higher along the field lines and temperature gradients are higher perpendicular to them
the plasma is confined within a loop. Consequently the emitting plasma on the loop out-
lines the magnetic field lines. The temperature range of the plasma within a coronal loop
(106 K – 107 K) is such that they emit in the extreme ultraviolet part of the electromag-
netic spectrum. By definition the magnetic field is parallel to the field lines at any given
point so the geometry of the loops provides us with the direction of the coronal magnetic
field.

The difficulties present in directly measuring the coronal magnetic field make the
use of computational methods the only available option for studying the its structure.
These computational reconstructions extrapolate the magnetic field measurements from
either the photosphere or the chromosphere where they can be more accurately performed.
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1.2 Different coronal field extrapolation methods

These numerical methods are generally called coronal magnetic field extrapolations. Ev-
ery extrapolation method requires a set of assumptions for the description of the plasma
in the solar corona. These assumptions lead to a system of partial differential equations,
which have to be solved with adequate boundary conditions to reconstruct the coronal
magnetic field structure in 3D.

There is a great variety of different methods ranging from the most involved ones
like full magneto-hydro-dynamics (MHD) simulations where the full system of MHD is
numerically solved (Feng et al. 2012, Lionello et al. 2014, Feng et al. 2021) to the simplest
potential field extrapolation methods, where the working hypothesis is that there are no
currents within the coronal volume (Schatten et al. 1969, Tóth et al. 2011). It is obvious
that these models differ drastically in their complexity, the level of detail captured in their
output solution and their needs for computational resources. Potential field models are
easy to apply, but they do not perform well in describing the field in the low corona where
the structure of the magnetic field is affected by currents within the coronal volume.

1.2.1 From MHD models to potential field extrapolations
Magneto-hydro-dynamics is the theoretical framework that describes the interactions of a
magnetized fluid with a magnetic field. The MHD equations are:

Continuity Equation:
∂ρ

∂t
+ ∇ · (ρv) = 0 (1.2)

Momentum Equation:
∂(ρv)
∂t
+ ∇ · (ρvv + pI − BB) = ρg (1.3)

Induction Equation:
∂B
∂t
= ∇ × (v × B) + η∇2B (1.4)

Energy Equation:
∂e
∂t
+ ∇ · [(e + p)v − (B · B)v + ηJ × B] = ρg · v (1.5)

The symbols in these equations represent the following physical quantities:
ρ: mass density of the fluid
v: fluid velocity vector
p: thermal pressure
B: magnetic field vector
I: identity matrix
g: gravitational acceleration vector
η: magnetic diffusivity (resistivity)
J: electric current density vector
e: total energy density, including kinetic, thermal, and magnetic components.
These equations are the main components of magnetohydrodynamics. The continuity
equation represents the conservation of mass and the momentum equation the conser-
vation of momentum (Navier-Stokes equation). The induction equation describes the
evolution of the magnetic field while the energy equation represents the conservation of
energy.

It is worth noting that in certain situations, additional forces may need to be included
in the momentum equation. For instance, when working in a rotating frame of refer-
ence, as stars are, non-Newtonian forces such as centrifugal force and Coriolis force may
become significant compared to other forces in the system.
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1 Introduction

The MHD approximation can be applied to study the phenomena in the solar corona
as the mean free path of the particles comprising the plasma in the corona is significantly
lower than the characteristic length scales present on the structures to be studied. For
a detailed discussion for why this is a valid condition we refer to Petrie (2000) and for
comparing with other theories that can be used to describe plasma-like kinetic theory see
Marsch (2006).

The MHD models need to be provided with a set of initial conditions for all of the
variables the MHD differential equations are solved for, including the scalar quantities
(plasma pressure and the plasma density) and the vector quantities (plasma velocity and
magnetic field). The uncertainty in estimating/measuring these quantities is a factor that
affects the quality of their output solutions. The density and pressure profiles are often
taken by assuming hydrostatic equilibrium while the magnetic fields are approximated by
one of the simpler methods discussed below. Some models also include additional forces
in the momentum equation like the gravitational force and forces caused by the solar
rotation (centrifugal force and Coriolis force). The contribution of non-magnetic forces
becomes important when studying the solar corona outside of the source surface where
the plasma β is increasing again and thus their contribution is becoming significant com-
pared to the magnitude of the magnetic force (Feng et al. 2012). The advantage of these
models is that because their output is not limited to the magnetic field, all their output
plasma parameters can be used to create synthetic images that can then be compared with
observations in order to assess the quality of the reconstruction (Feng et al. 2012, 2021).
A special class of MHD models is the stationary MHD models (Wiegelmann et al. 2020).
The basic difference here is that the corona is approximated to be in a equilibrium state
therefore all time-dependent terms in the MHD equations are zero. For stationary MHD
equilibria the plasma velocity is not zero, but they consider the solar wind on open mag-
netic field lines. A further simplification are the magneto-hydro-static (MHS) models,
which do not consider plasma flows. The MHS equations are given by

1
4π

(∇ × B) × B − ∇p − ρ∇Φ = 0, (1.6)

∇ · B = 0. (1.7)

In equation 1.6, p and ρ are the plasma pressure and density respectively, and Φ is the
gravity potential. For the MHS system to be complete, we need to connect density and
pressure with temperature using an equation of state.

p = ρkBT/m, (1.8)

where T is the plasma temperature, kB is the Boltzmann constant, and m the mean molec-
ular mass of the gas particles.

In both cases (stationary MHD and MHS) the corona is described by going through
a series of quasi-static states. This assumption is reasonable when the time difference
between two consecutive states is smaller than the Alfvén time which is the characteristic
time that the information needs to propagate within the corona (see Aschwanden 2005).
For a detailed discussion on MHS methods see the review article by Zhu et al. (2022).
The next even simpler modeling approach to model the coronal magnetic field is the
nonlinear force-free field (NLFFF) approximation. When one neglects pressure gradients
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1.2 Different coronal field extrapolation methods

and gravity terms then the system of equations is reduced to the vanishing Lorentz force
equation

j⃗ × B⃗ = 0 (1.9)

and the divergence free condition 1.7. From 1.9 it is obvious that the magnetic field should
either be parallel or anti-parallel to the electric current or that the current should be zero.
Therefore, we can write the following equation as

∇ × B⃗ = αB⃗. (1.10)

The quantity α is generally a function of the spatial coordinates. When combining 1.7
with 1.10

B⃗ · ∇α = 0 (1.11)

For equation 1.11 we can deduce that α can take different values only when moving per-
pendicular to the field lines thus it is constant along each field line. When α is different for
each field line then the extrapolation is called nonlinear force-free extrapolation. When α
is chosen to be constant for the whole computational domain then this is the case of linear
force-free extrapolation, and finally when α = 0 we have the potential field extrapolation.

1.2.1.1 Nonlinear force-free models

The main argument for using the force-free approach is that as mentioned in section 1.1
the plasma β is two to four orders of magnitudes lower than unity within the solar corona
and especially above the active regions. The magnetic forces drive all the charged particles
to follow their geometry. The validity of this assumption is shown in Wiegelmann et al.
(2020) where although the model is solving the stationary MHD equations the field does
not deviate significantly by the nonlinear force-free solution. Reconstructing nonlinear
force-free coronal magnetic fields is not a trivial task. For one, the field on the photo-
sphere is not force-free in fact, the plasma β is close to unity which practically means
that the gas pressure cannot be neglected. Therefore, one of the difficulties in performing
force-free extrapolations is that the magnetic field used as a boundary condition for the
computational models could be inconsistent with the force-free condition. An important
remark here is that, as discussed in Wiegelmann and Sakurai (2021), although there are
other forces (gravity and pressure gradient), it is possible that they cancel each other re-
sulting in a boundary consistent with the force free condition. Another difficulty is the
lack of vector data on the other boundaries of the computational domain. Ideally, we
would like to have reliable measurements for all the ‘box’ boundaries but this is impossi-
ble because of our inability to accurately measure the magnetic field in the solar corona.
One common solution to this problem is using even more simplified assumptions to fix
the boundaries. For example, the application of the source surface condition (the field
becomes purely radial at about 2.5 solar radii). This mimics the effect of the solar wind
stretching and opening the magnetic field lines. Thus we get the condition B⃗θ = B⃗ϕ = 0
or the boundaries are taken from a potential field source surface (PFSS) extrapolation.
The system of force-free equations 1.7 and 1.9 cannot be classified in the general types of
partial differential equations (elliptical, parabolic, and hyperbolic). Therefore, its solution
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1 Introduction

requires special numerical methods. Some of the most successful methods for nonlinear
force-free extrapolations are

• Grad-Rubin method (Sakurai 1981)

• Upward integration method (Wu et al. 1990)

• MHD relaxation method (Mikic and McClymont 1994, Valori et al. 2005, Inoue
et al. 2014)

• Optimization method (Wheatland et al. 2000)

• Greens function method (Yan and Sakurai 2000)

• Force-free electrodynamics method (Contopoulos et al. 2011).

Another difficulty in developing force-free extrapolation methods is the lack of analytical
solutions for nonlinear force-free magnetic field that could be used as test study cases to
evaluate the performance of different numerical methods. There is however one semi-
analytical solution designed by Low and Lou (1990) that is usually used as a benchmark
solution. This solution can be used as a reference solution because although it does not
have infinite accuracy, the fact that the 3D configuration depends on solving an ordinary
differential equation and not a partial differential equation allows for solving with a very
small iteration step thus achieving desired accuracy higher than the grid resolution. From
all the methods listed above the ones that are widely used today are the MHD relaxation
method, the Grad-Rubin method, and the Optimization method.

1.3 Potential field extrapolations

1.3.1 Mathematical foundation
When reconstructing the coronal magnetic field and the electric currents are completely
neglected within the coronal volume, then the extrapolation method is called ‘potential
field extrapolation’ because the magnetic field can be expressed as the gradient of a po-
tential scalar field. As it is shown in Griffiths (2017), in chapter 6, the magnetic field is
governed by the equation

∇ × B = 0. (1.12)

That subsequently means that the magnetic field is a curl-free vector field. By the
Helmholtz decomposition theorem, any such vector field can be decomposed into the
sum of a gradient field and a solenoidal field. The gradient field is of the form

B = −∇ϕ, (1.13)

where ϕ is a scalar potential field. Taking the curl of both sides, we obtain

∇ × B = ∇ × (−∇ϕ) = 0. (1.14)

Therefore, the magnetic field can be expressed as the gradient of a scalar potential
field ϕ. Taking the divergence of both sides of the equation B = −∇ϕ, we obtain
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1.3 Potential field extrapolations

∇ · B = −∇2ϕ = 0 (1.15)

which is the Laplace equation for the scalar potential field ϕ. Subsequently, solving the
Laplace equation for the scalar field ϕ can then easily provide the magnetic field if we
take its first gradient.

1.3.2 Different methods to solve the Laplace equation
The Laplace equation is a fundamental mathematical concept that is widely used to model
various physical phenomena. Due to its versatility, numerous algorithms and methods
have been developed over the years to solve the equation effectively.

• Finite difference method: The finite difference method involves approximating the
Laplacian in the Laplace equation using a set of difference equations, which are
then solved using linear algebra techniques. The method requires that the boundary
conditions be specified at the grid points, and it is relatively simple to implement.
Chapter 5 of the book covers the finite difference method. An example of the im-
plementation of such a method on potential coronal field extrapolation is Altschuler
and Newkirk Jr (1969b) and Han et al. (2018)

• Finite element method: The finite element method involves dividing the region of
interest into smaller, simpler subregions, and then approximating the solution of
the Laplace equation using a weighted sum of the solutions for each subregion. The
method requires that the boundary conditions be specified on the boundaries of the
subregions, and it can be used to solve problems with complex geometries. Chapter
10 of Gilat and Subramaniam (2014) covers the finite element method. This method
is applied to the solar coronal field in McLaughlin (1989).

• Boundary element method: The boundary element method involves approximating
the solution of the Laplace equation on the boundary of the region of interest, rather
than on the interior. The method requires that the boundary conditions be specified
on the boundary, and it can be used to solve problems with complex geometries.
The method is relatively efficient, as it only requires the solution of linear algebraic
equations, and it can be used to solve problems in two or three dimensions. Chap-
ter 11 of Gilat and Subramaniam (2014) covers the boundary element method. In
Glatzmaier (1987) the boundary element method is used for the reconstruction of
the potential coronal magnetic field.

• Method of moments: The method of moments involves approximating the solution
of the Laplace equation using a set of basis functions that satisfy the boundary
conditions. The method requires that the boundary conditions be specified on the
boundary of the region of interest, and it can be used to solve problems with com-
plex geometries. The method is relatively efficient, as it only requires the solution
of linear algebraic equations, and it can be used to solve problems in two or three
dimensions. Chapter 12 of Gilat and Subramaniam (2014) covers the method of
moments. This method is not yet used for potential field extrapolations in the solar
corona.
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• Spectral methods: The spectral methods involve approximating the solution of the
Laplace equation using a sum of basis functions that are selected to match the prob-
lem geometry. The method requires that the boundary conditions can be specified
on the boundary of the region of interest, and it can be used to solve problems with
complex geometries. The method is relatively efficient, as it can produce accurate
solutions using a relatively small number of basis functions, and it can be used
to solve problems in two or three dimensions. Chapter 14 of Gilat and Subrama-
niam (2014) covers the spectral methods. In Altschuler and Newkirk Jr (1969a),
the authors solve the Laplace equation in Cartesian geometry using a fast Fourier
transformation (FFT). In Altschuler and Newkirk Jr (1969a), the authors use the
spherical harmonics as the basis functions to calculate the potential magnetic field.

1.3.3 Spherical harmonics decomposition for solving the Laplace equa-
tion in spherical geometry

1.3.3.1 The 3D Laplace equation in spherical coordinates

The content of the subsubsection 1.3.3.1 is a summary of information included in chapter
3 of Griffiths (2017) The 3D Laplace equation in spherical coordinates is given by

∇2u =
1
r2

∂

∂r

(
r2∂u
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ
∂u
∂θ

)
+

1
r2 sin2 θ

∂2u
∂ϕ2 = 0, (1.16)

where u is the unknown function and ∇2 is the Laplacian operator in spherical coordinates.
We can assume that the solution to the Laplace equation can be written as a product

of three functions of the three independent variables, i.e.,

u(r, θ, ϕ) = R(r)Y(θ)Z(ϕ). (1.17)

Using separation of variables in this context is justified because the Laplace equation
is linear and homogeneous, meaning that any linear combination of solutions is also a
solution. Therefore, if we can find a set of solutions to each of the separate ordinary
differential equations, we can combine them to obtain a general solution to the Laplace
equation. The assumption of separability simplifies the problem by reducing a partial
differential equation to a set of ordinary differential equations, which are easier to solve.

By substituting 1.17 into the Laplace equation and separating the variables, we obtain
three separate ordinary differential equations:

1
R

d
dr

(
r2 dR

dr

)
−
λ2

r2 = 0, (1.18)

1
Y

(
sin θ

d
dθ

(
sin θ

dY
dθ

)
+
λ2

sin2 θ
−

m2

sin2 θ

)
= 0, (1.19)

d2Z
dϕ2 + µ

2Z = 0, (1.20)

where λ, m, and µ are constants, which arise from the separation of variables.
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1.3 Potential field extrapolations

The general solution to each of these equations is given by a linear combination of
the associated Legendre functions Pm

l (x) and Qm
l (x), and the spherical Bessel functions

jl(x) and yl(x). The assumption of separability, in which we assume that the solution
can be written as a product of functions of each independent variable, allows us to solve
the 3D Laplace equation in spherical coordinates by solving the three separate ordinary
differential equations and then combine the solutions using the principle of superposition.

1.3.4 Spherical harmonics expansion
When solving numerically the Laplace equation for the solar corona, the magnetic field at
the inner boundary of the computational domain is specified based on accurate measure-
ments from instruments. As a result, the boundary condition for this boundary is that the
radial derivative of the scalar potential equals the magnetic field.

The steps for solving the Laplace equation on a sphere with a known gradient of the
potential on the spherical boundary using spherical harmonics are:

• Start with the Laplace equation in spherical coordinates, which is given by

∇2u =
1
r2

∂

∂r

(
r2∂u
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ
∂u
∂θ

)
+

1
r2 sin2 θ

∂2u
∂ϕ2 = 0.

• Assume that the solution can be written as a sum of spherical harmonics, which are
given by

Ym
l (θ, ϕ) = (−1)m

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (cos θ)eimϕ,

where l and m are integers, with l ≥ |m|, and Pm
l are the associated Legendre poly-

nomials.

• Substitute the spherical harmonics into the Laplace equation and use the orthonor-
mality property of the spherical harmonics to separate the equation into a set of
equations for the coefficients:

∇2u =
∞∑

l=0

l∑
m=−l

clm∇
2Ym

l =

∞∑
l=0

l∑
m=−l

clm(−l(l + 1))Ym
l = 0,

where clm are the expansion coefficients for the solution. This gives a set of equa-
tions for the coefficients

−l(l + 1)clm = 0.

• Because l(l + 1) ≥ 0, the only solution to this equation is clm = 0 for all l and m
except for l = m = 0. Therefore, the solution can be written as

u(r, θ, ϕ) = c00Y0
0 (θ, ϕ),

where c00 is a constant to be determined.
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• Apply the boundary conditions to solve for the constant c00 and the expansion co-
efficients for the gradient of the potential. The boundary condition is given by

∂u
∂r

(R, θ, ϕ) = g(θ, ϕ),

where R is the radius of the sphere and g(θ, ϕ) is the known gradient of the potential
on the spherical boundary.

• Expand the gradient of the potential g(θ, ϕ) in terms of the spherical harmonics

g(θ, ϕ) =
∞∑

l=0

l∑
m=−l

blmYm
l (θ, ϕ),

where blm are the expansion coefficients for the gradient of the potential.

• Differentiate the solution expression with respect to r and substitute the expression
for the solution u(r, θ, ϕ) into the boundary condition, and equate it to the expansion
of g(θ, ϕ) in terms of the spherical harmonics

∂u
∂r

(R, θ, ϕ) = c00
∂

∂r
Y0

0 (R, θ, ϕ) =
∞∑

l=0

l∑
m=−l

blm
∂

∂r
Ym

l (R, θ, ϕ).

• Use the derivative of the spherical harmonics with respect to r to isolate the constant
c00

c00 =
1

∂
∂r Y0

0 (R, θ, ϕ)

∞∑
l=0

l∑
m=−l

blm
∂

∂r
Ym

l (R, θ, ϕ).

• Substitute the expression for c00 into the solution expression:

u(r, θ, ϕ) =
1

∂
∂r Y0

0 (R, θ, ϕ)

∞∑
l=0

l∑
m=−l

blm
∂

∂r
Ym

l (r, θ, ϕ)Y0
0 (R, θ, ϕ).

• The solution can be evaluated at any point on the sphere using this expression, by
substituting the values of r, θ, and ϕ for the desired point, and computing the sum
over the expansion coefficients blm.

The expansion in terms of spherical harmonics provides a highly accurate representa-
tion of the solution and can be truncated after a finite number of terms to approximate the
solution with any desired level of accuracy. The accuracy of the solution depends on the
number of terms included in the expansion and can be improved by including more terms
in the expansion.
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1.4 Finite differences, finite volumes, and finite elements

1.4 Finite differences, finite volumes, and finite elements

1.4.1 Finite differences numerical methods
1.4.1.1 Introduction

According to LeVeque (2007), chapter 1, section “Introduction to Finite Differences”,
finite difference numerical methods are a class of numerical methods that are commonly
used for approximating the solutions of differential equations. These methods rely on
the idea of approximating the derivatives of a function at a point using the values of the
function at nearby points.

The basic idea behind finite differences is to approximate the derivative of a function at
a point by computing the difference between the function values at nearby points, divided
by the distance between those points. Specifically, given a function f (x) and a point x0,
we can approximate the derivative of f (x) at x0 using the formula

f ′(x0) ≈
f (x0 + h) − f (x0)

h
,

where h is a small positive number (the ‘step size’) that determines the distance between
the two points x0 and x0 + h. This approximation is called a ‘forward difference’ because
it uses the value of f at x0 and the value of f at a point slightly larger than x0.

Similarly, we can approximate the derivative of f (x) at x0 using the formula:

f ′(x0) ≈
f (x0) − f (x0 − h)

h
.

This approximation is called a ‘backward difference’ because it uses the value of f at x0

and the value of f at a point slightly smaller than x0.
These two formulas are the basic building blocks of finite differences numerical meth-

ods. By combining them in various ways, we can approximate higher-order derivatives,
solve differential equations, and perform a wide variety of other numerical calculations.

For example, we can use the forward difference formula to approximate the second
derivative of f (x) at x0:

f ′′(x0) ≈
f ′(x0 + h) − f ′(x0)

h
.

Substituting the first formula for f ′(x0 + h) and simplifying, we get:

f ′′(x0) ≈
f (x0 + 2h) − 2 f (x0 + h) + f (x0)

h2 .

This formula is called a "centered difference" because it uses the values of f at three
points (x0 − h, x0, x0 + h) centered around x0.

Finite difference methods can be used to approximate not only the first-order deriva-
tive but also higher-order derivatives, such as the second-order derivative. We will dis-
cuss three different approximations for the second-order derivative: central differences,
forward differences, and backward differences.

1. Central differences:
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The central difference method is a more accurate approximation of the second-
order derivative than the forward or backward difference methods. The formula
for the second-order central difference is derived by first approximating the first-
order derivative using both the forward and backward difference formulas, and then
combining them to find the second-order derivative. The formula for the second-
order central difference is

f ′′(x0) ≈
f (x0 + h) − 2 f (x0) + f (x0 − h)

h2 .

This method uses the values of the function f (x) at three points (x0 − h, x0, x0 + h)
centered around x0.

2. Forward differences:

The forward difference method for approximating the second-order derivative is
based on the forward difference formula for the first-order derivative. To derive the
formula, we first compute the forward difference for the first-order derivative at x0

and x0 + h, and then subtract them, resulting in

f ′′(x0) ≈
f ′(x0 + h) − f ′(x0)

h
.

Next, we substitute the forward difference formula for the first-order derivatives,
obtaining

f ′′(x0) ≈
f (x0 + 2h) − f (x0 + h) − ( f (x0 + h) − f (x0))

h2 .

Simplifying the expression, we get

f ′′(x0) ≈
f (x0 + 2h) − 2 f (x0 + h) + f (x0)

h2 .

3. Backward differences:

Similarly, the backward difference method for approximating the second-order deriva-
tive is based on the backward difference formula for the first-order derivative. To
derive the formula, we first compute the backward difference for the first-order
derivative at x0 and x0 − h, and then subtract them, resulting in

f ′′(x0) ≈
f ′(x0) − f ′(x0 − h)

h
.

Next, we substitute the backward difference formula for the first-order derivatives,
obtaining

f ′′(x0) ≈
( f (x0) − f (x0 − h)) − ( f (x0 − h) − f (x0 − 2h))

h2 .

Simplifying the expression, we get

f ′′(x0) ≈
f (x0) − 2 f (x0 − h) + f (x0 − 2h)

h2 .
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These three methods for approximating the second-order derivative can be applied to
various numerical calculations and can be easily extended to approximate higher-order
derivatives. While central differences generally provide more accurate results, forward
and backward differences can be useful in specific cases, such as when the function is not
defined for certain values or when there are no data from both sides of the point where the
derivative is to be calculated like the boundaries of a computational grid.

We can also use finite differences to solve differential equations by approximating the
derivatives in the differential equation using finite differences. For example, consider the
differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = r(x).

We can approximate the second derivative y′′(x) using the centered difference formula,
and approximate the first derivative y′(x) using either the forward or backward difference
formula, depending on the direction in which we are moving along the x-axis. We can
then substitute these approximations into the differential equation and solve for y(x) using
standard numerical methods such as the Euler method, the Runge-Kutta method, or the
shooting method.

Finite difference numerical methods have many advantages, including simplicity, flex-
ibility, and ease of implementation. However, they also have some limitations, such as the
fact that they can be prone to round-off errors, and the fact that they may not always con-
verge to the true solution of a differential equation. Therefore, it is important to carefully
analyze the accuracy and stability of finite difference numerical methods and choose the
appropriate method for a given problem.

One important consideration when using finite differences is the choice of step size
h. If h is too small, the approximation error will be small, but the round-off error may
become significant. On the other hand, if h is too large, the approximation error will
be large, and the approximation may be inaccurate. There are several techniques for
choosing an appropriate value of h for a given problem. One common approach is to
perform a convergence analysis, in which the approximation error is computed for a range
of different values of h, and the value of h that produces the smallest error is chosen.
Another approach is to use adaptive step size control, in which the value of h is adjusted
dynamically during the calculation based on the behavior of the approximation error.

Despite their limitations, finite difference numerical methods remain an important tool
for numerical analysis and scientific computing. They are widely used in a variety of ap-
plications, including physics, engineering, finance, and computer science, and they pro-
vide a powerful and flexible tool for approximating the solutions of differential equations
and performing a wide range of other numerical calculations.

1.4.2 Solving partial differential equations using finite differences

As it is discussed in LeVeque (2007) in chapter 2 section “Finite differences for differ-
ential equations”, one of the most important applications of finite differences is solving
partial differential equations (PDEs). PDEs are equations that involve functions of sev-
eral variables and their partial derivatives, and they arise in many areas of science and
engineering, including physics, chemistry, and biology.

21



1 Introduction

To solve a PDE using finite differences, we first discretize the domain of the PDE into
a grid of points. We then use finite differences to approximate the partial derivatives of
the function at each point on the grid. This results in a system of algebraic equations that
can be solved numerically using standard methods.

The choice of grid spacing and the type of finite difference scheme used depend on
the specific PDE being solved and the desired accuracy of the solution. For example, if
the PDE is linear and homogeneous, a standard centered difference scheme with a small
grid spacing may be sufficient to obtain an accurate solution. However, if the PDE is non-
linear or has nonhomogeneous boundary conditions, more sophisticated finite difference
schemes may be required to obtain an accurate solution.

In addition to the choice of finite difference scheme, the choice of boundary conditions
is also important when solving PDEs using finite differences. The boundary conditions
specify the behaviour of the solution at the edges of the domain, and they must be incor-
porated into the finite difference scheme in order to obtain an accurate solution.

Despite their complexity, finite difference numerical methods provide a powerful tool
for solving a wide variety of PDEs. They are widely used in applications such as fluid
dynamics, electromagnetism, and finance, and they continue to be an important area of
research in numerical analysis and scientific computing.

1.4.3 Finite elements method

Another method to approximate solutions to partial differential equations (PDEs) is the
finite element method (FEM). As it is explained in the book by Logan (2017), the method
involves dividing the domain of the problem into smaller subdomains or elements, and
approximating the solution within each element using simple functions called basis func-
tions. These basis functions are chosen to match the behaviour of the true solution within
each element.

The FEM works by converting the original PDE problem into a system of algebraic
equations that can be solved using matrix techniques. This is done by defining a set of
nodal values for the solution within each element, and then constructing a global system
of equations by assembling the contributions from all the individual elements.

To solve the resulting system of equations, numerical techniques such as Gaussian
elimination or iterative methods like successive over relaxation (Young 1950) and multi
grid methods (Brandt 1977) can be used. Once the nodal values of the solution have been
determined, the approximate solution can be reconstructed within each element using the
basis functions. For a more detailed discussion on the mathematical foundation of the
finite element method see Brenner and Scott (2007).

The FEM has many advantages over other numerical methods for solving PDEs, in-
cluding its ability to handle complex geometries and boundary conditions, and its flex-
ibility in choosing the approximation functions. It has a wide range of applications in
engineering and science, including structural analysis (Courant 1943), fluid mechanics
(Cardona et al. 2020), heat transfer (Dhiman and Gupta 2020), and electromagnetism
(Guo et al. 2019).
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1.4.4 Finite volume method

As it is discussed in Yu and Jin (2017), the finite volume method (FVM) is a numerical
method for solving PDEs on a discretized domain. FVM is a special case of the finite
element method (FEM) and shares many similarities with FEM. Both methods divide the
domain into discrete elements and approximate the solution within each element using
a set of basis functions. However, there are some fundamental differences between the
two methods. In FVM, the computational domain is discretized into a set of control
volumes or cells. The governing equations are then integrated over each control volume
to obtain a discrete set of equations that can be solved numerically. The fluxes across
the cell boundaries are computed using a numerical scheme, such as the upwind scheme
or central differences, based on the values at the neighbouring cells. The value of the
function is set to be constant within the volume element. This is different from the finite
element method, which represents the solution by interpolating the function using a set
of basis functions over each element and therefore the function can have different values
within the same element.

One fundamental property of the FVM is that, by construction, conservation laws are
satisfied. This ensures that the total quantity being transported, such as mass, momentum,
or energy, is conserved across the domain. As a result of this conservation property, FVM
is a suitable choice for physics simulations where the conservation of different quanti-
ties is of major importance. For example, FVM is commonly used in fluid dynamics
simulations, where the conservation of mass, momentum, and energy are critical to the
accuracy of the simulation. For a detailed presentation of different numerical implemen-
tations, algorithms and grid structures (see Guo et al. 2019). FVM is also used in other
areas such as electromagnetic simulations, where the conservation of charge and energy
is equally important (see Yang et al. 2021). In contrast, the FEM does not have the same
conservation property as the FVM. While FEM is also a numerical method for PDEs, it
approximates the solution by interpolating the function using a set of basis functions over
each element. This means that FEM does not naturally conserve quantities and requires
additional techniques to enforce conservation.

Another advantage of FVM is its ability to handle complex geometries and unstruc-
tured meshes. Because FVM only requires the computation of fluxes across element
boundaries, it can be used with irregular meshes and complex geometries without the
need for additional techniques such as mesh smoothing or mesh refinement.

1.4.5 Unstructured grid

According to Braess (2007), unstructured grids are defined as a type of numerical grids
used in computational simulations that do not have a regular or uniform structure. Unlike
structured grids, which consist of a regular array of identical cells or elements, unstruc-
tured grids are flexible and adaptable, allowing for more accurate simulations of complex
geometries or physical phenomena.

Unstructured grids can be generated using various methods. The Delaunay triangula-
tion was introduced by Boris Delaunay, a Russian mathematician. In Delaunay (1934),
Delaunay was interested in finding the most efficient way to triangulate a set of points in
the plane. He proved that the Delaunay triangulation, which he defined as the triangula-
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tion that maximizes the minimum angle of the triangles, has several important properties,
including that it is unique, and that it minimizes the number of triangles with obtuse an-
gles. Nowadays, the Delaunay triangulation and methods based on it are some of the
most commonly used techniques for generating unstructured grids in numerical simu-
lations due to its simplicity, efficiency, and ability to adapt to complex geometries (see
Bossavit 2003, Zhao et al. 2022). In Shewchuk (1996) advancing front techniques were
introduced, which is another method for generating a mesh for numerical simulations
of complex geometries. The method involves moving a front across the domain to be
meshed and creating triangles as the front advances. The front starts with a set of seed
points on the boundary of the domain and generates new points and triangles as it moves.
The method can produce high-quality meshes with good geometric accuracy, but it can
be computationally expensive compared to other mesh generation techniques. For a more
detailed discussion of this method and a comparison with Delaunay triangulation see Loy
et al. (2020).

The cells or elements in an unstructured grid can be triangles, quadrilaterals, in 2D,
and tetrahedra, hexahedra in 3D. Other shapes can also be utilized depending on the na-
ture of the specific problem (Huang et al. 2019) discusses in detail the advantages and
disadvantages of the different shapes of the elements. Unstructured grids are often used
in conjunction with numerical methods such as a finite element or finite volume methods,
which are commonly used to solve differential equations, as discussed in the previous
sections.

In general, unstructured grids are most useful when the geometry of the domain is
complex or irregular, or when it changes over time. They can also be useful for adaptive
mesh refinement and large-scale simulations. However, unstructured grids can be more
difficult to generate and may require more computational resources than structured grids,
so their use should be carefully considered based on the specific needs of the case in hand.

1.5 Finite differences spherical grids, challenges, and so-
lutions

1.5.1 Finite difference spherical grids
The content of this section is based on Ruffert (2014). A finite difference spherical grid
is a discretization of a spherical domain into a set of grid points, where the values of a
solution are approximated by finite differences. This type of grid is commonly used to
solve partial differential equations on a spherical domain, such as the Laplace or Poisson
equations, and is particularly useful in geophysical and astrophysical applications such
as seismology (Celli et al. 1999), astroseismology (Gough and Thompson 1988), and
magnetospheric physics (Thanasoulis et al. 2020).

In a finite difference spherical grid, the sphere is divided into a set of points in the
radial, polar, and azimuthal directions. The unit vectors associated with the polar radial
and azimuthal directions, denoted r̂, θ̂, and ϕ̂, respectively, are defined in the same way
as in spherical coordinates. These unit vectors are all perpendicular to each other, and
point in the direction of increasing radius, polar and azimuthal angles, respectively. The
unit vectors can be expressed in terms of a Cartesian frame of reference by using the

24



1.5 Finite differences spherical grids, challenges, and solutions

transformation equations

r̂ =
(
cos ϕ sin θ, sin ϕ sin θ, cos θ

)
,

θ̂ =
(
cos ϕ cos θ, sin ϕ cos θ,− sin θ

)
,

ϕ̂ =
(
− sin ϕ, cos ϕ, 0

)
.

These equations express the unit vectors in terms of the Cartesian unit vectors x̂, ŷ, and
ẑ, where x̂ points in the direction of increasing azimuthal angle, and ŷ and ẑ complete a
right-handed coordinate system.

1.5.2 Convergence problem at the poles
One of the convergence problems associated with using a finite difference method on a
spherical grid is the issue of grid convergence at the poles. The convergence of finite dif-
ference schemes can be adversely affected by the singular nature of the coordinate system
at the poles of a spherical grid. This can lead to inaccurate solutions and numerical insta-
bilities. In the field of coronal magnetic field extrapolations such problems are discussed
in Usmanov (1996) and Wiegelmann (2007). Several techniques have been developed to
handle the convergence problems at the poles. One of the commonly used methods is
to apply a coordinate transformation that maps the original grid onto a new grid that is
regular or quasi-regular near the poles. This means that the distance between grid points
is more uniform, and the convergence issues can be mitigated. For example, in the con-
text of modeling the Earth’s atmosphere, the latitude-longitude grid can have convergence
problems near the poles, where the meridians converge. To address this, a common ap-
proach is to use a coordinate transformation that maps the latitude-longitude grid onto a
new grid that is regular near the poles, such as a polar stereographic projection. This can
improve the accuracy and stability of the numerical method in these regions, allowing for
more reliable simulations, see, e.g., Sun et al. (2011).

Another approach is to use a staggered grid, as done in Williamson and Drake (2003),
where the variables are defined at different points in the grid, rather than at the same
points. This can help to reduce the singularity problem and improve the accuracy of
the numerical solution. A multi-grid approach can also be used. This method involves
solving the problem on a sequence of grids with increasing resolution, starting from a
coarse grid and moving towards a fine grid. At each level, a solution is calculated on the
current grid and then interpolated to the next finer grid to obtain an initial guess for the
solution. The solution is then refined on the finer grid using an iterative method, such as a
relaxation method or a conjugate gradient method. The resulting solution on the finer grid
is then interpolated back to the coarser grid to obtain an improved solution on the original
grid. The multi-grid approach can help to improve the accuracy of the solution near the
poles without requiring a large number of grid points. By starting from a coarse grid
and progressively refining the solution on finer grids, the method can capture the relevant
features of the solution at each level of resolution, while avoiding the need for excessively
fine grids that would be computationally expensive. In the context of modeling the Earth’s
atmosphere or oceans, multi-grid methods have been widely used to handle convergence
issues near the poles, where the meridians converge. These methods can help to improve
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the accuracy and efficiency of numerical simulations and are commonly used in climate
models and weather forecasting models as it is done in Skamarock and Klemp (1997).

Finally, another approach is to use a spectral method, as discussed in the section re-
garding potential field extrapolation. In that case, because the computation is done using
the orthogonal base of functions the convergence of the spatial grid is not an issue. The
grid convergence problem at the poles can also be avoided by using an unstructured grid
(say triangles on the Sun’s surface, tetrahedra in 3D) in combination with FEM or similar
methods.

1.5.3 Yin-Yang grid as a solution to the convergence problem at the
poles

The spherical Yin-Yang grid is a type of grid that is used for numerical simulations of
problems on the surface of a sphere, such as weather forecasting or climate modeling. The
Yin-Yang grid was introduced in Kageyama et al. (2004) as an elegant way to combine
the benefits of a structured and unstructured grid.

The Yin-Yang grid consists of two identical, overlapping grids, each of which is based
on a Cartesian coordinate system. One grid is oriented along the x, y, and z axes, while the
other is oriented along the x, -y, and z axes. When the two grids are superimposed, they
form a nearly spherical grid that has no singularities or abrupt changes in grid spacing.
The grid is divided into four quadrants, which are labeled “Yin” and “Yang” based on
their orientation in the Cartesian coordinate system. The computational spherical Yin-
Yang grid is specifically designed for use in numerical simulations where the nature of
the problem makes the use of a spherical grid an obvious choice. The grid is nearly
isotropic, with nearly uniform spacing between grid points, and is free of singularities at
the poles. It has several advantages over other types of grids, including its nearly uniform
grid spacing, its ability to handle problems with steep gradients, and its compatibility
with high-order numerical methods. The grid has been used in a variety of applications,
including weather forecasting (Chen et al. 2013), climate modeling (Wang et al. 2014),
astroseismology (Kpyl et al. 2010), and magnetic coronal field extrapolations (Jing et al.
2013).

1.6 Optimization algorithms

1.6.1 Introduction and definition

According to Nocedal and Wright (2006) and Pedregal (2004), chapter 1, optimization
algorithms are mathematical procedures used to find the best solution or combination of
parameters for a given problem. The goal of optimization is to find the optimal set of pa-
rameters that maximize or minimize a given objective function. Optimization algorithms
are used in a wide range of applications, including engineering, economics, finance, logis-
tics, and machine learning. In many real-world applications, finding the optimal solution
can be very difficult or even impossible using traditional analytical methods. Optimiza-
tion algorithms provide a way to search for the optimal solution efficiently and effectively,
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often using numerical methods. Any optimization algorithm includes the following basic
elements:

• Objective function: An objective function is a mathematical function that measures
the quality of a solution. The goal of an optimization algorithm is to find the input
values that minimize or maximize the objective function.

• Decision variables: Decision variables are the input values that can be adjusted to
optimize the objective function. The decision variables can be continuous, discrete,
or a combination of both.

• Constraints: Constraints are conditions that must be satisfied by the solution. Con-
straints can be expressed as mathematical equations or inequalities that restrict the
feasible region of the decision variables.

• Search space: The search space is the set of all possible solutions to the optimiza-
tion problem. The search space can be finite or infinite, discrete or continuous, and
may or may not be bounded.

• Iterative optimization process: An optimization algorithm is a procedure that searches
the search space to find the optimal solution. Optimization algorithms can be de-
terministic or stochastic and can be classified into different categories based on the
search strategy and the solution representation.

• Stopping criterion: A stopping criterion is a condition that terminates the optimiza-
tion algorithm when a certain convergence criterion is met. Stopping criteria can
be based on the number of iterations, the change in the objective function, or other
measures of convergence.

There are several types of optimization algorithms, for example gradient-based algo-
rithms (Birkhoff and von Neumann 1946, Robbins and Monro 1951, Hestenes and Stiefel
1952) and metaheuristic algorithms (Holland 1975, Kirkpatrick et al. 1983, Kennedy and
Eberhart 1995). Each type of algorithms has its own strengths and weaknesses, and the
choice of an algorithm depends on the specific problem being solved and the computa-
tional resources available.

1.6.2 Gradient descent algorithm
1.6.2.1 Steepest descent

The work presented in this thesis is based on the gradient descent algorithm with a variable
learning rate. The following section will provide a detailed explanation of the algorithm’s
basic idea and potential implementations. The “Numerical Optimization” book by No-
cedal and Wright Nocedal and Wright (2006), in chapter 2, provides a comprehensive
treatment of optimization algorithms, including the gradient descent algorithm. The gra-
dient descent algorithm is an iterative optimization algorithm that is used to minimize an
objective function. The basic idea is to start with an initial guess for the minimum and
then iteratively update the guess using the negative gradient of the function at the current
guess. The gradient represents the direction of the steepest ascent, so taking its negative
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gives the direction of the steepest descent, which leads to the minimum. The algorithm
continues to update the guess until a stopping criterion is met. The objective function is
typically defined over a multivariate space, so the gradient descent algorithm is general-
ized to vector-valued functions. In this case, the gradient is replaced with the Jacobian
matrix, which represents the matrix of partial derivatives of the objective function with
respect to its variables.

The gradient of the objective function f(x) at the point x is given by
∂ f (x)
∂x1
∂ f (x)
∂x2
...
∂ f (x)
∂xn


The direction of the steepest descent at the point x is given by the negative gradient

d = −∇ f (x).

The gradient descent algorithm updates the current point xk by taking a step in the direc-
tion of the negative gradient, multiplied by a step size αk

xk+1 = xk + αkd.

The step size αk is typically chosen using a line search algorithm to ensure that the algo-
rithm is making sufficient progress in each iteration. One common approach is to choose
αk to satisfy the Armijo condition

f (xk + αkd) ≤ f (xk) + c1αk∇ f (xk)T d,

introduced in Armijo (1966), where c1 is a constant between 0 and 1. The gradient descent
algorithm continues to update the point xk using the negative gradient direction until a
stopping criterion is met, such as a maximum number of iterations or a minimum change
in the objective function.

1.6.2.2 Stochastic gradient descent optimization method

Chapter 8 of “Numerical Optimization” by Nocedal and Wright (2006) provides a detailed
introduction to stochastic gradient descent and its variants. The Stochastic Gradient De-
scent (SGD) algorithm is a popular optimization technique that is widely used in machine
learning and other applications where the objective function is too large or too complex
to be differentiated with respect to all its variables. The method was firstly proposed in
Robbins and Monro (1951) in the context of finding the route to a nonlinear equation.
The method is proven to be particularly effective even in cases where the traditional nu-
merical methods struggle. In the same article, the authors discuss how this method can be
implemented to find the minimum of a function. The modern stochastic gradient descent
method and its variances are based on the work of this publication. The basic idea behind
stochastic gradient descent is to approximate the objective function using a randomly-
selected subset of the variables at each iteration. Rather than computing the gradient of

28
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the objective function using the entire parameter set, SGD computes the gradient using a
small subset of variables or even only one of them. This “stochastic” gradient is then used
to update the variables of the optimization problem.

The advantage of stochastic gradient descent is that it can be much faster than steep-
est gradient descent, which computes the gradient using the entire parameter set at each
iteration. Therefore, stochastic gradient descent can converge more quickly and more ef-
ficiently. However, attractive this method might look, there are still some challenges that
need to be addressed. In particular, the stochastic gradient may be noisy or inaccurate,
which can lead to slow convergence or even divergence of the algorithm. To address these
issues, several variants of stochastic gradient descent have been developed, including:

Mini-batch gradient descent: This variant of SGD computes the gradient using a small
batch of parameters, rather than a single one. This way, mini-batch SGD can reduce
the noise in the gradient and improve convergence speed. It was introduced in Bottou
(2010) and since then is one of the algorithms that are widely used in machine learning
optimization.

Momentum-based methods: These methods use a weighted average of past gradients
to update the parameters, which can help to smooth out the noise in the stochastic gradient
and improve convergence. One of the most popular momentum-based methods is the
Nesterov’s accelerated gradient (see Nesterov 1983) which uses a lookahead gradient to
improve convergence. Although in its original form, this method is using the full gradient
of the objective function, it can be combined with the stochastic approach with even better
results as it was introduced in Sutskever et al. (2013).

Adaptive learning rate methods: These methods adjust the learning rate based on the
past gradients, which can help to ensure that the optimization process converges quickly
and efficiently. One popular adaptive learning rate method is AdaGrad, which adapts the
learning rate for each parameter based on the sum of the squares of the past gradients. This
method was introduced in Duchi et al. (2011). The paper shows that AdaGrad can improve
the convergence rate of stochastic optimization algorithms, particularly for problems with
sparse gradients.
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2 Developing a Yin-Yang code for
force free full sphere extrapolation

The scientific content of chapter 2 was published in Koumtzis and Wiegelmann (2023).

2.1 Code description

2.1.1 Optimization code
Force-free magnetic-fields are defined by both a vanishing Lorentz force and a vanishing
magnetic-field divergence. Therefore, they have to obey the following equations

(∇ × B⃗) × B⃗ = 0, (2.1)
∇ · B⃗ = 0. (2.2)

One possibility to solve Equations 2.1 and 2.2 was proposed by Wheatland et al. (2000)
through the minimization of a functional L. For the study of global coronal magnetic
fields, we use a functional expressed in spherical geometry as introduced by Wiegelmann
(2007) and defined as

L =
∫

V

[
B−2 |(∇ × B⃗) × B⃗|2 + |∇ · B⃗|2

]
r2 sin θ dr dθ dϕ. (2.3)

The definition of the functional (Equation 2.3) is such that L = 0 fulfils the requirement
that the field is both force and divergence-free, because the quadratic form in the func-
tional ensures that Equations 2.1 and 2.2 are satisfied for L = 0. The functional derivative
of the functional leads to

∂B⃗
∂t
= µF⃗, (2.4)

where µ refers to a positive constant and the pseudo force F⃗ is defined as

F⃗ = ∇ × (Ω⃗a × B⃗) − Ω⃗a × (∇ × B⃗)
+∇(Ω⃗b · B⃗) − Ω⃗b(∇ · B⃗) + (Ω⃗2

a + Ω⃗
2
b) B⃗ (2.5)

with

Ω⃗a = B−2
[
(∇ × B⃗) × B⃗

]
(2.6)

Ω⃗b = B−2
[
(∇ · B⃗) B⃗

]
. (2.7)
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A typical approach to solving nonlinear force-free equilibrium by minimizing Equation
2.3 is to use a potential field as the initial state, which is a special class of a force-free
equilibrium. Potential fields are usually not consistent with the horizontal magnetic field
measurements, which are used as the bottom boundary for our model. Subsequently when
calculating the functional (Equation 2.3) after having replaced the bottom layer of the po-
tential field with the observed field, there is a (large) deviation of force- and divergence
freeness. The functional L is then minimized numerically by applying the iterative equa-
tion (Equation 2.4). For the tests performed in this study, we use synthetic synoptic vector
magnetograms and generalize the implementation of our spherical optimization code for
synoptic magnetograms as described by Tadesse et al. (2014).

2.1.2 Yin–Yang grid

When the optimization algorithm is implemented on a regular finite-difference spheri-
cal grid, there are some limitations when the computational domain extends towards the
poles. Close to the polar regions, the spatial-grid converges, which means that the mini-
mum distance between the grid points decreases. The iteration step scales with the square
of the spatial grid resolution and consequently the number of iteration steps until L reaches
its minimum increases dramatically. The dynamic time-step control in our previous spher-
ical code (and also in the Cartesian code) decreases the time-step automatically when L
does not monotonically decrease. Consequently, the time-step decreases by several orders
of magnitude and the number of iterations steps until the convergence increases accord-
ingly. Up to now, this limitation of the code was not significant for the application to
currently available data, because the lack of reliable magnetic field measurements in solar
polar regions did not allow accurate modeling of the coronal magnetic field above the
poles in any case. Consequently, the computational domain was limited between 20 and
160 degrees in latitude to achieve a reasonable execution time. In the advent of polar mag-
netic field measurements from the Solar Orbiter mission, we implement the optimization
code on a Yin–Yang grid to overcome the polar convergence issue. The Yin–Yang grid
was introduced by Kageyama and Sato (2004) for geophysical applications. This over-
head grid was to our knowledge first applied to solar applications by Jiang et al. (2012)
who implemented a Yin–Yang grid in their CESE-MHD code to compute nonlinear force-
free fields equilibria by MHD relaxation. A Yin-Yang grid was also implemented in the
AMR-CESE-MHD code to study the global coronal evolution in a data-driven model by
Feng et al. (2012). The Yin–Yang grid consists of two identical spherical grids. The
first component of the grid is a regular spherical grid with some cutout regions. More
specifically, π4 < θ <

3π
4 and π

4 < ϕ <
7π
4 , which corresponds to 45◦ < θ < 135◦ and

45◦ < ϕ < 315◦ (θ refers to the co-latitude and ϕ to the longitude). The other component
of the grid is the Yang grid, which is identical to the complementary Yin grid and perpen-
dicular to it. More specifically, the north pole of the Yang grid is located at 90 degrees
longitude and 90 degrees latitude. While both grids do not have polar regions, the two
combined grids cover the entire sphere. The spherical grids are defined close enough to
the equatorial regions so that the finite-difference grid is almost equidistant. This allows
the use of a larger iteration step. The price one has to pay is that the boundaries of each
grid should be updated to capture the evolution of the field that happens within the other
grid. This should be done while the optimization algorithm is running, thus increasing the
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algorithm complexity. The corresponding coordinate transformation equations between
the two grids are given by

re = rn, (2.8)
sin θe cos ϕe = − sin θn cos ϕn, (2.9)
sin θe sin ϕe = cos θn, (2.10)

cos θe = sin θn sin ϕn, (2.11)

where the index e is used to refer to the Yin grid and the index n to the Yang grid. As
the two-component grids are completely symmetrical to each other, the same expression
is used to transform coordinates from the Yang to the Yin grid. The symmetry of the two
grids is very convenient for the implementation of the code, because all mathematical and
algorithmic procedures can operate on both grids.

2.1.3 Yin–Yang implementation
There are two basic differences between the previous version of the optimization code
and the newly developed one. All numerical operations called to operate on one grid are
also called to operate on the other. The lateral boundaries of each grid (which have been
fixed to a potential field in previous code versions) are now updated with values taken
from the complementary grid. In this way, the new method overcomes the problem of
earlier codes where the lateral boundaries were required to be specified. The Yin–Yang
implementation requires only boundary conditions at the photosphere and on the outer
boundary. In order to update the boundaries of one grid using the values from the other,
we apply the following procedure:

1. For an arbitrary grid point, we perform a coordinate transformation to find its coor-
dinates with respect to the other grid.

2. Compute the magnetic-field vector at this point, by applying an interpolation method.
It is important to note here that the new coordinates of our arbitrary point do not
have to match with the coordinates of a grid point of the other grid and this is why
we have to interpolate to estimate the components of the magnetic-field vector.

3. Transform the magnetic vector back to the initial grid.

Because of the symmetry of the grids, this process is identical regardless of which is the
first and which is the second grid. We describe below all the steps needed for the new
Yin–Yang optimization code.

1. Initialize the Yin grid by performing a potential extrapolation using the line of sight
magnetogram as a boundary condition.

2. Replace the bottom boundary of the Yin grid with a vector magnetogram. Here, a
synthetic one deduced from the Low and Lou solution (a semi-analytical force-free
equilibrium found by Low and Lou (1990)) is used.

3. Initialize the Yang grid by coordinate transformation, interpolation, and vector
transformation.
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4. Calculate L with Equation 2.3 separately on both grids.

5. Add L = LYin + LYang.

6. The iterative Equation 2.4 is used to iterate the field towards minimizing L sepa-
rately on both grids.

7. The boundaries of each grid are updated using the values of the field on the other
grid (by coordinate transformation, interpolation, and vector transformation).

8. The code is terminated when L becomes stationary.

9. The final solution can be transformed to both grids.

2.2 Validation of the code

2.2.1 Method
In this section, we want to evaluate the performance of our newly developed code. The
aim is to find out whether our code is able to minimize the functional L down to the nu-
merical precision and to compare the output of our code with a known nonlinear force-free
field reference equilibrium. Checking the force-freeness and comparing with a reference
solution are standard procedures to validate NLFFF codes implemented on Cartesian and
spherical grids. A frequently used reference solution for this aim is a semi-analytical non-
linear force-free equilibrium solution found by Low and Lou (1990). This method solves
a Grad–Shafranov equation in spherical coordinates, which is invariant in the ϕ-direction,
but displacements of the origin and rotation allow us to compute equilibria which change
in all three spatial coordinates. It can be used to evaluate nonlinear force-free codes in 3D
(as done for Cartesian geometry by, e.g., Wiegelmann 2004, Amari et al. 2006, Schrijver
et al. 2006, Inhester and Wiegelmann 2006, Valori et al. 2007) and to evaluate spherical
NLFFF codes (Wiegelmann 2007, Song et al. 2007, Tadesse et al. 2009, Jiang et al. 2012,
Guo et al. 2012, Contopoulos 2013, Amari et al. 2013). Following these works, we use a
spherical Low and Lou solution as reference to evaluate our code, which we do as follows.

1. Calculate the spherical Low and Lou solution in 3D which from now on we will
call the reference solution. A field-line plot for this reference solution is shown
in Figure 2.1, left panel. The reference solution was computed on a spherical grid
with nr = 45, nθ = 90, and nϕ = 180 where nr is the number of points in the radial
direction, nθ is the number of points in latitude, and nϕ is the number of points in
longitude.

2. By using the radial component of the Low and Lou solution as a synthetic mag-
netogram, we performed a potential-field extrapolation on the same spherical grid,
which is shown in Figure 2.1, middle panel.

3. We use the potential field as computed in the last step as initial equilibrium and
the bottom boundary from the reference solution is taken as a synthetic vector map
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Figure 2.1: A comparison of some magnetic-field lines. The left panel shows the Low
and Lou reference solution, the center panel the initial PFSS field, and the right panel the
output from our code.

used as a boundary condition for our new code. The top boundary was selected
to be either the top boundary of the potential field or the top boundary from the
reference field. The effect of using these different top boundary conditions will be
examined in Section 2.2.2.

4. We run the optimization code and compare the results with the reference Low and
Lou solution and evaluate the influence of several effects as stated below. A visual
representation of one of our outputs (dubbed Case 3, see also Table 2.1) is shown
in Figure 2.1, right panel.

2.2.2 Code specifications and free parameters
A number of different parameters are used in order to control the flow of the code and to
specify different conditions, as explained below. How these specifications influence the
quality and computing time of our code are presented in Table 2.1.

1. Interpolation method: Specifies the order of the interpolation method used dur-
ing the vector transformation process. As a first test, we use a bi-linear interpo-
lation. Please note that the r is always identical on both grids and interpolation
is needed only for the lateral directions. In principle, higher-order interpolation
methods could be used.

2. Non-interpolation steps (NIS): Defines the number of optimization steps between
updating the boundaries of the one grid with vectors interpolated and transformed
from the other grid.

3. The initial iteration step is µ = 10−4, which is sufficiently small to ensure a strictly
decreasing functional L if µ is kept constant.

4. Iteration-step reducer: This parameter divides µ if the functional L does not de-
crease after one iteration step. This is considered as a non-successful iteration step,
which is refused and repeated with the reduced iteration step when running the code
with a dynamically controlled time step.

35



2 Developing a Yin-Yang code for force free full sphere extrapolation

5. Iteration step increaser: This parameter multiplies µ by 1.01 after every successful
iteration step. This doubles the iteration step after 70 successful iterations. The
optimization ensures a continuous decrease of L (see Wheatland et al. 2000). In a
numerical implementation, L can increase if the iteration time-step is too large. The
time-step increaser and reducer help to search for the optimum time-step, as high as
possible (for a short computing time) and as low as necessary (to ensure a strictly
monotonically decreasing L). The code is terminated either when the maximum
number of iterations is reached or when µ becomes smaller than a threshold number:
10−9.

6. The original Yin–Yang grid spans in the range 45 ≤ θ ≤ 135 and 45 ≤ ϕ ≤ 315. In
most cases we use this standard grid, but we investigate also the effect of different
(non-standard) grids.

2.2.3 Qualitative evaluation
Our first tool to validate our new code is the comparison between the field lines of the
solution resulting from our code with the field lines of the reference solution and the
potential solution as shown in Figure 2.1. It is evident from the reference solution in
the left panel that the output of our code depicts a very good qualitative agreement of
the corresponding magnetic-field lines. The potential-field model, which was used as the
initial equilibrium for our code, shows large deviations in the field-line plots.

2.2.4 Quantitative evaluation
Visualizing our solution and comparing the corresponding magnetic field line plots with
the reference solution as done in Figure 2.1 is a fast way to qualitatively evaluate our
results. Here we use a number of quantitative criteria. The value of the functional L
(Equation 2.3) after the optimization evaluates how close the resulting field is to a force-
free and divergence-free state. We compute this also separately for the Lorentz-force part,
defined as

L1 =

∫
V

[
B−2 |(∇ × B⃗) × B⃗2

]
r2 sin θ dr dθ dϕ, (2.12)

and the divergence integral defined as

L2 =

∫
V
|∇ · B⃗|2 r2 sin θ dr dθ dϕ. (2.13)

Additionally, we compare our results quantitatively with the reference resolution by a
number of quantitative measures, (as introduced by Schrijver et al. 2006).

Namely we use the Vector Correlation, which is defined as

VC =
∑

i

B⃗i · b⃗i/

∑
i

|B⃗i|
2
∑

i

|b⃗i|
2

1/2

, (2.14)

and the Energy Percentage defined as

EP =
∑

i |b⃗i|
2∑

i |B⃗i|
2
. (2.15)
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The magnetic-field output from our code [b⃗i] is compared to a reference solution [B⃗i] (here
the Low and Lou solution). For a perfect agreement of our solutions with the reference,
both quantities should be unity. In order to compute these numerical quantities, the sums
are taken over all N data points of the computational grid. More specifically, for the
computation of each quantity, we calculate the Yin and the Yang part separately and then
add them. In order to not include the overlapping region twice in the computations for
these regions we use the points of the Yin grid. The vector correlation VC is an important
indicator of how well the two vector fields agree, because it involves the dot products
between the vectors as well as their magnitudes. The percentage of the magnetic energy
EP not only helps us to compare the two vector fields but also has a physical meaning. If
the energy in our solution is not close to the energy of the reference solution our model
is not that useful because being able to calculate the free magnetic energy stored in the
corona is one of the reasons why nonlinear force-free extrapolations are useful. Having
the energy percentage close to unity tells us that overall the vectors of our vector field
have the correct magnitude.

2.2.5 Comparison of different test cases
Case 0: In this case the initial potential field and the discretization error (L, L1, and L2) are

computed. This does not require optimization, but only one iteration to compute
the functional L. A comparison with the reference solution is done as well. All
comparison criteria should be close to their ideal values so that the potential-field
solution is meaningful.

Case 1: This case estimates the discretization error of the reference solution computed on
the numerical grids. Again, no iteration was done, just one evaluation of L was
computed.

Cases 2 – 4: These are the first real tests, which use an initial potential field and both the bottom
and top boundaries are prescribed from the reference solution. This ensures fully
consistent boundary conditions. This set-up of boundary conditions for the Yin–
Yang code is equivalent to prescribing all six boundaries of the computational box
of a Cartesian NLFFF code. All quantities show an almost perfect agreement with
the reference solution (Case 1). The values of L, L1, and L2 are even a bit smaller
than the discretization error of the semi-analytical reference field. The reason for
this is that the code optimizes these quantities on the numerical grids. The results
are not affected if the update of the boundaries between the Yin–Yang grid is done
after every iteration step (Case 2) or only after every 10 or 100 iteration steps as
in Cases 3 and 4, respectively. When examining the convergence of the code, it
seems that in Case 2 it converges faster than in Case 3 and in Case 3 it converges
faster than in Case 4. This can be understood as a more frequent update of the
boundaries that insures faster flow of information between the grids. When we talk
about convergence speed we refer to the number of iterations needed to reduce L.
The difference in convergence speed is so small that it is not visible in Figure 2.3.
A significant difference is observed in the computational time, which is reduced by
about 8% as the updating of the boundaries is a lot less frequent in these cases. The
reduction of the execution time is not that significant when going from 10 to 100
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Case NIS Bound µ control Iterations Time L L1 L2 VC EP
Cases 1 – 7 with constant iteration time step µ
Yin & Yang grid with 45 ≤ θ ≤ 135 and 45 ≤ ϕ ≤ 315

0 1 p - 1 < 1 0.001 0.001 0.000 0.820 0.780
1 1 1 - 1 < 1 0.035 0.017 0.018 1.000 1.000
2 1 l - 40 000 207 0.020 0.015 0.005 1.000 1.002
3 10 l - 40 000 191 0.020 0.015 0.006 1.000 1.002
4 100 l - 40 000 186 0.021 0.016 0.006 0.999 1.001
5 1 p - 31 880 165 0.086 0.058 0.028 0.995 0.967
6 10 p - 31 480 163 0.086 0.058 0.028 0.994 0.967
7 100 p - 35 200 183 0.086 0.057 0.028 0.995 0.967

Cases 8 – 13 with dynamical controlled iteration time step µ
Yin & Yang grid with 45 ≤ θ ≤ 135 and 45 ≤ ϕ ≤ 315

8 1 l 2.0 11 407 64 0.056 0.038 0.018 0.996 0.981
9 1 l 1.5 11 744 64 0.056 0.038 0.018 0.997 0.980

10 1 l 1.25 4287 24 0.086 0.058 0.028 0.994 0.969
11 1 p 2.0 6817 37 0.102 0.074 0.028 0.992 0.951
12 1 p 1.5 7477 41 0.103 0.075 0.028 0.992 0.950
13 1 p 1.25 6922 38 0.102 0.074 0.028 0.992 0.951

Case 14 with Yin & Yang grid with 50 ≤ θ ≤ 130 and 35 ≤ ϕ ≤ 325
14 1 l 2 3357 17 1.290 1.032 0.258 0.983 0.924

Case 15 with Yin & Yang grid with 35 ≤ θ ≤ 145 and 55 ≤ ϕ ≤ 305
15 1 l 2 3055 16 1.289 1.031 0.258 0.983 0.922

Table 2.1: The specifications of our test cases (columns 1 – 4) and a quantitative evaluation
of the results (columns 5 – 11). The first column “Case" names the test cases. The second
column “NIS" the Non-Interpolation-Steps. This means the number of iterations are done
on the Yin and Yang separately without communication between the two grids. Column
three ‘Bound’ specifies the used boundary condition. Here “l" means that the Low and
Lou reference field was specified in the photosphere and on the outer boundary and “p"
means that a potential field was specified on the outer boundary. Column 4 “µ control""
specifies whether a constant iteration time step was used (value 1) or if and how the time-
step was controlled dynamically (see the text for details). Column 5 “Iterations" shows
the number of iteration steps until convergence and column 6 “Time", the computational
time in minutes on Macbook pro with M1 processor. Columns 7 – 9 “L", “L1", “L2"
show the final value of the minimized functional L (see Equation 2.3) and its two parts
which are the residual Lorentz force (see Equation 2.12) and the residual magnetic field
divergence (see Equation 2.13). Finally, we compare the output of our code with the
reference solution by the vector correlation (see equation 2.14) in column 10 “VC" and
the energy percentage (see equation( 2.15)) in column 11 named “EP".

non-interpolation steps as the percentage of the execution time that the code spends
on doing the updates is a lot smaller in Case 3 than in Case 2. In all cases, a fixed
(small) iteration time-step was used and the code was running until the maximum
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number of allowed steps (40 000) was reached. The evolution of L (a decrease of
almost four orders of magnitude) during the iterations is shown in Figure 2.2 and the
development of the vector correlation and energy percentage in Figure 2.3. These
two quantities naturally start with the potential-field values and reach almost unity
at the end of the iteration.

Cases 5–7: They are similar to Cases 2 – 4 with the only difference that the bottom boundary
of our computational domain was prescribed by the reference solution. The outer
boundary was taken from the initial potential-field solution. These two boundaries
are not necessarily consistent with each other. However, these test cases mimic the
situation when the code is applied to measurements. When a full-Sun extrapola-
tion is attempted, only photospheric magnetic-field measurements are available at
present and the outer boundary is a priori unknown. This set-up of boundary con-
ditions is comparable to specifying only the bottom boundary of a Cartesian code.
The inconsistent top and bottom boundary result in slightly L, L1, and L2, a still
almost perfect vector correlation, and an error of about 3% in the magnetic energy.
Again the number of non-interpolation steps hardly influenced the result. Updat-
ing the interpolation only every ten steps resulted in the lowest computing time,
but not by a large margin. In order to understand this difference is important to
mention here that in Case 6 fewer iterations were needed to reach the state with a
minimum L compared to Case 7. This is expected as the more frequent update of
the boundaries ensures faster communication between the grids, thus accelerating t
he convergence. On the other hand, the code runs faster when the updates are not
that frequent. Therefore, the combination of these two competing procedures gives
us this complex dynamics.

Cases 8 – 10: Here, instead of using a fixed, small iteration step, we controlled the iteration step
dynamically. If both bottom and top boundaries are prescribed, we get a slight in-
crease in the residual errors L, L1, and L2 compared to the cases where a fixed time
step is used and an error in the energy percentage of 2 – 3%. The vector correlation
is almost one. Compared with a fixed time step, we obtain a drastically reduced
computational time by a factor of about 3.3 in the worst case. It is interesting to
state here that while the code needs 11 000 iterations in case 8 to reach the mini-
mum L, during the last 6000 iterations it is converging so slowly that L is reduced
only 10%.

Cases 11 – 13: Here. we explore the dynamic time step control for the realistic case in which only
the photospheric magnetic field is provided. The effects of potential inconsistent
bottom and outer boundaries and the effects of the dynamic control of time step
cumulate in a slightly higher residual error in L1, but not in L2. Compared with the
fixed-time-step computation, the error in the energy percentage increases by another
3% and the magnetic energy is underestimated by 5% compared to the reference
solution. The computing time decreases by a factor of about 4.5 compared to the
cases with a fixed time step.

Cases 14 and 15: Here, we investigate the effect of a non-standard Yin–Yang grid and changed the
areas where both grids overlap. This was done for a case with a dynamically con-
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trolled time step and the top boundary taken from the reference solution. All quan-
tities (residual L, L1, and L2 and comparison matrices VC and EP) are worse than
with the standard Yin–Yang grid, and consequently, we do not investigate further
non-standard grids.
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Figure 2.2: Minimization of functional L: from left to right, Cases 2, 3, and 4.

0 10000 20000 30000 40000
Iteration steps

0.75

0.80

0.85

0.90

0.95

1.00

Ra
tio

s

Convergence diagnostics

Vector correlation
Energy percentage

0 10000 20000 30000 40000
Iteration steps

0.75

0.80

0.85

0.90

0.95

1.00

Ra
tio

s

Convergence diagnostics

Vector correlation
Energy percentage

0 10000 20000 30000 40000
Iteration steps

0.75

0.80

0.85

0.90

0.95

1.00

Ra
tio

s

Convergence diagnostics

Vector correlation
Energy percentage

Figure 2.3: Evolution of the vector correlation and normalized magnetic energy: from left
to right Cases 2, 3, and 4.

2.3 Conclusion
We developed a new nonlinear force-free optimization code implemented on a Yin–Yang
grid. The quality of the solutions is comparable to the ones produced by a previous version
of the spherical NLFFF code as described by Wiegelmann (2007). Please note that the
previous code version did not include proper treatment of the polar regions and the earlier
tests were done on a lower resolution grid. Within this work, we investigated the influence
of several code specifications. The first more technical test was to investigate the new code
under the condition of complete and consistent boundary conditions, where the reference
solution was specified on all boundaries, which showed an almost perfect agreement of
the computed equilibria with the reference solution.

Please note that the Yin–Yang grids have no lateral boundaries and only bottom and
top boundaries needed to be prescribed. On the Sun, we have, however, only magnetic-
field measurements in the photosphere and the top boundary conditions are unknown. A
natural guess is using a potential-field source surface model to prescribe the boundary
conditions on the source surface. Our code still provides a good agreement with the
reference solution. The vector correlation with the reference solution has an error of
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about 0.5% and the error in the magnetic energy is in the range of 3% (for a fixed small
time step), and 5% (for a dynamically controlled time step). A dynamic time step does,
however, reduce the computing time by about a factor of 4.5.

We also investigated to what extent the final result is influenced by how often the
Yin grid and Yang grid communicate with each other (after every iteration step, after 10,
and after 100 steps). It was found that these hardly influence the solution. The lowest
computing time was reached if the interpolation between the two grids was done every
tenth iteration step. However much tempting is to suggest using a dynamically controlled
time step and grid communication at every tenth step as standard for future application to
data, the combination of these parameters may have different results when working with
observational data thus using an update every step is the safest suggestion. If computing
time does not matter, a small, fixed time step gives somewhat more accurate results.
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3 Using observed synoptic
magnetograms as boundary
conditions during solar minimum
and maximum

3.1 Observational data

Following the validation of our newly developed force-free extrapolation code, as demon-
strated through the comparison with the semi-analytical Low and Lou solution detailed
in Chapter 2, we are now suitably prepared to assess its performance using a data set that
more accurately reflects real-world conditions.This phase of testing will allow us to gauge
the code’s convergence properties and to calibrate the coronal magnetic field reconstruc-
tion when observed photospheric magnetic fields are applied as boundary conditions for
the lower boundary. The temperature in the photosphere is about 5000 K and from 1
to 3 MK in the corona. In this study, we used observations taken in the time period of
two Carrington rotations (CRs), namely CR2222 which covers the time period from 2019
September 19 03:43 UT to 2019 October 16 10:29 UT and CR2133 from 2013 January
25 19:57 UT to 2013 February 22 04:07 UT. We use imaging data from the Atmospheric
Imaging Assembly (AIA, Lemen et al. 2012) on board the Solar Dynamics Observa-
tory (SDO, Pesnell et al. 2012) taken in the 193 Å channel (log T (K) ∼6.2, hereafter
AIA 193), 171 Å,(log T (K) ∼ 5.85, hereafter AIA 171), and 211 Å (log T (K) ∼6.3, here-
after AIA 211). These three images sample emission from spectral lines with formation
temperatures from 0.9 to 2 MK. These AIA channels have also some contribution from
transition region emission (for more details see Mou et al. 2018, and references therein).
The AIA data have 0.6′′ × 0.6′′ pixel size. The three channels are combined to create
multi-channel images that reveal clearly the coronal holes, that are used to match with the
open magnetic field lines derived from the extrapolation models.

We also employ data from the Helioseismic Magnetic Imager (HMI, Scherrer et al.
2012). These are vector magnetograms that were converted into Carrington maps. as it
is described in Liu et al. (2017). These vector synoptic maps are created by combining
20 different disk center vector magnetograms. The vector field is calculated using the
Stokes parameters (I,Q,U,V) by utilizing a Milne-Eddington based inversion algorithm
as it is described in Borrero et al. (2011) and Centeno et al. (2014). The 180 degree
ambiguity for the transverse component of the magnetic field is treated with different
methods depending on the field strength within a particular pixel and the pixel’s location
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Figure 3.1: This is the synoptic vector magnetogram for CR2133 during solar activity
maximum. It was observed 2013 between January 25 and February 22.

(inside or outside of an active region.) More specifically, if a pixel is located in an active
region or if the strength of the transverse field is higher than 150 G then the minimum
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3.1 Observational data

Figure 3.2: Synoptic vector magnetogram for CR2222 during solar activity minimum. It
was observed 2019 between September 19 and October 16.

energy algorithm is used (Metcalf 1994, Metcalf et al. 2006, Leka et al. 2009). In the case
of weaker transverse fields, three different methods are tested with the one chosen for the
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particular HMI data product being the Random method. This method is selected because
of its superior performance and its ability to not create artificial patterns in the data.

Figure 3.1 presents the synoptic vector magnetograms for CR2133, capturing the so-
lar activity maximum. The panels, arranged from top to bottom, depict Br, Bθ, and,Bϕ,
respectively. A number of active regions are prominently visible in the top panel. It is
worth noting that the reliability of the transverse magnetic field component, as illustrated
in the center and bottom panels, is confined primarily to the active regions.

Figure 3.2 presents the synoptic vector magnetogram for CR2222 during the period
of solar activity minimum. To facilitate a direct comparison, we utilize the same color
scale as the one employed for the synoptic map during the maximum solar activity phase.
The top panel of the figure highlights the radial magnetic field component (Br), revealing
a notable abundance of strong magnetic flux concentrated in both polar regions, while no
active regions are evident. Comparatively, the transverse magnetic flux throughout the
entire map is considerably smaller in magnitude compared to the synoptic map captured
during the peak of solar activity.

3.2 Adapted Yin-Yang code for using observational mag-
netograms as boundary conditions

It is important to note that during the process of reconstructing the Low and Lou solution,
we employed synthetic boundary conditions derived directly from the three-dimensional
Low and Lou solution. This methodology ensured that there were no errors or inconsis-
tencies present within the boundary field. By contrast, the use of observed photospheric
magnetic fields as boundary conditions in this next phase of testing introduces an ele-
ment of complexity and uncertainty, as these realistic data contain inherent errors and
inconsistencies. The outcomes of this phase offer valuable insights into the robustness
of our extrapolation code under realistic operating conditions and its ability to accurately
reproduce the magnetic field structure of the solar corona.

As outlined in 1.2.1.1, the magnetic field on the photosphere does not necessarily
conform to the force-free assumption. The plasma β on the photosphere is of the order
of unity, which is significantly higher than in the corona. As such, the possibility arises
of an angle between the magnetic field and the electric current, inherently introducing a
degree of ‘non-force-freeness’ into our model.

Another challenge associated with the use of observed magnetic fields as boundary
conditions stems from the measurement process itself. Although the photospheric fields
are more accurately measured than the fields in the chromosphere and the corona, the
measurement process is far from simple. It involves dealing with noisy signals and re-
quires the application of several underlying assumptions as was discussed in section 3.1.
Therefore, despite the relative accuracy of photospheric field measurements, their use in-
troduces an additional layer of complexity and potential sources of error into the model.
This complexity underscores the importance of rigorous analysis and validation when
using these measurements as boundary conditions in our force-free extrapolation code.

To address the impact of inconsistent boundaries and enable the convergence of the
code to a force-free field, an additional term was incorporated into the optimization func-
tional, denoted as L3. This term was first introduced in Wiegelmann and Inhester (2010)
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in Cartesian geometry and was adjusted specifically to be used with data from SDO/HMI
in Wiegelmann et al. (2012). The expanded functional was also implemented in spherical
geometry in Tadesse et al. (2011). The L3 supplementary term is given by the following
equation

L3 =

∫
S

(
B⃗FF − B⃗obs

)
· W⃗(θ, ϕ) ·

(
B⃗FF − B⃗obs

)
r2 sin θ, dθ, dϕ. (3.1)

In this equation, B⃗FF symbolizes the field derived from the optimization, B⃗obs signi-
fies the observed field, and W⃗(θ, ϕ) is a function denoting the reliability of the data, which
depends on polar and azimuthal angles. More specifically, for our application, we used
the following formula for the weighting function. We decompose the observed magnetic
field on the photosphere into two components, the radial and the transverse component.
The radial component is perpendicular to the solar surface while the transverse compo-
nent is tangential to it. The function w(θ, ϕ)r is set to be unity because for HMI data we
trust the radial field. The transverse part of w(θ, ϕ)t is defined as the ratio of the magni-
tude of the transverse magnetic field over the magnitude of the maximum transverse field.
This definition reflects the fact that we consider the stronger fields more reliable than the
weaker ones. With the implementation of this weighting function, the weak field regions
will contribute less to the L3 term and thus the optimization will ‘focus’ on preserving the
observed field that is more reliable.

Upon studying equation 3.1, it becomes apparent that when the derived field coincides
perfectly with the observed field, the value of L3 becomes zero. Therefore, this term
essentially reflects the divergence of our field from the magnetogram. After the inclusion
of this term, the complete functional to be minimized is given by

L =
∫

V

[
B−2 |(∇ × B⃗) × B⃗|2 + |∇ · B⃗|2

]
r2 sin θ dr dθ dϕ+∫

S

(
B⃗ − B⃗obs

)
· W⃗(θ, ϕ) ·

(
B⃗ − B⃗obs

)
r2 sin θ, dθ, dϕ.

(3.2)

In practice, the functional 3.2 with the addition of the L3 term will allow the bottom
boundary to differ from the observed magnetic field such as that the force-free condition
is fulfilled while trying to keep it as close as possible to the magnetogram.

3.2.1 Algorithm description with the L3 term included
In Chapter 2 we discuss in detail the steps of the optimization algorithm when synthetic
boundaries are used. In this section we will present the steps of the adapted optimization
algorithm when the objective function is set to 3.2.

• Use the radial component of the observed magnetic field on the photosphere to com-
pute the potential coronal field using the spherical harmonics expansion method.

• Fix the top boundary of the computational domain using the outer layer of the po-
tential field as boundary condition. The potential field extrapolation extends up to
the source surface where the magnetic field is set to be purely radial. Keeping the
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potential field as the top boundary condition is justified because there are no strong
currents so high in the solar corona.

• Start the optimization process to minimize the functional 3.2. The line search adap-
tive step optimization algorithm is terminated when the step size is reduced below
a threshold value. In this case, this value is set to be 10−9.

As in the case of synthetic Low and Lou boundary in any iteration of the optimization
algorithm the grids ‘communicate’ by updating the boundaries of each grid. The steps
followed are again coordinate transformation, interpolation and vector transformation.

For our extrapolations, we employed two distinct Yin-Yang grids with different spe-
cial resolution. The low resolution grid was configured to comprise 45, 90, and 180
points along the radial, polar, and azimuth directions, respectively. The second, double
resolution grid, consists of 90, 180, and 360 points along the radial, polar, and azimuth
directions, respectively.

The specified number of grid points corresponds to each component of the Yin-Yang
grid, where both the Yin and Yang components take the form of spherical grids. How-
ever, despite each component possessing the designated number of points, not all of these
points are applicable to our computations. This is because each component grid’s cov-
erage is limited in both polar and azimuth directions, as discussed in Section 2. In our
methodology, we employ the lower resolution grid as a preliminary stage before execut-
ing our computations on the higher resolution grid. The exact process works as detailed
below.

• Compute the non-linear force-free field on the Yin-Yang grid for the low resolution
grid.

• Interpolate the resulting solution of the previous step into the higher resolution grid.

• Use a double resolution synoptic HMI magnetogram as a boundary condition.

• Perform the computation of the non-linear force-free field in the higher resolution
grid.

Adopting this procedure presents a key advantage - the interpolated field obtained in the
second step is more congruent with the final solution computed on the higher resolution
grid. This is in contrast to a potential field computed on the high-resolution grid, which
could serve as an alternative solution. As a result, this procedure ensures a more seamless
integration of the bottom boundary. This, in turn, aids the algorithm in swiftly and effi-
ciently minimizing the loss function. Moreover, it reduces the likelihood of the algorithm
becoming ’trapped’ in a local minimum, enhancing the overall optimization process.

In Figure 3.3, the evolution of the terms of the functional L is shown. It is important to
mention that in contrast to the case of validating the code with the Low and Lou solution,
when using the observed magnetograms, the L3 term is higher in the beginning but the
other two terms L1 and L2 are low. This can be explained because in this case the bottom
boundary is not substituted with the observed magnetogram in the beginning of the run.
Therefore, the first two terms get low values and the third term gets high value because
the bottom boundary is very different from the magnetogram. In the beginning of the
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Figure 3.3: Evolution of the functional L terms during field optimization for CR2133.

optimization process the algorithm is then prioritizing the minimization of the L3 term
because is the one that has the most significant contribution to the total L. The other two
terms increase but always in a way that the sum of all the terms keeps getting reduced.
Figure 3.3 depicts the progression of the functional L terms. Contrary to the situation
where the code is validated through the Low and Lou solution, when utilizing observed
magnetograms results in an initially higher L3 term, whereas the L1 and L2 terms remain
low. This difference exists because in the latter case, observed magnetogram is not ex-
plicitly set as the bottom boundary at the start of the simulation but is gradually inserted
to allow for a smoother convergence. As a result, the initial values for L1 and L2 are
low, while the L3 term is elevated due to significant diverge from the magnetogram at the
bottom boundary.

During the initial stages of the optimization process, the algorithm places priority on
minimizing the L3 term, given its dominant influence on the total L value. Although L1

and L2 eventually increase, their collective growth is controlled such that the cumulative
sum of all terms continually decreases.
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3.3 Results

3.3.1 Solar activity maximum (CR2133)
In Figure 3.4 we show the projection of the synoptic map for Br onto a solar disk image
as seen 2013 February 4. Figure 3.5 shows a AIA 193 image (top left panel) and a multi-
channel image (top right panel). Two large and two small equatorial plus one south pole
small coronal holes are well distinguishable.

Figure 3.4: Br component of the synoptic vector map projected onto the Sun with angle
of 231◦. This corresponds to the Sun as seen 2013 February 4. The synoptic map has the
resolution of one degree, as used as a boundary condition for the NLFFF code (360 pixel
in ϕ and 180 pixel in θ for the whole sphere).

Figure 3.6, top panel, displays a selection of magnetic field lines derived from a Po-
tential Field Source Surface (PFSS) model. This potential field was computed using a
spherical harmonics expansion, as initially outlined in Schatten et al. (1969). The mag-
netic field lines derived from our new NLFFF Yin-Yang code are presented in the bottom
panel. While there is a broad similarity in the overarching magnetic field structure be-
tween the two models, a detailed examination reveals notable discrepancies. Given that
these finer details can often be challenging to discern visually, we further explore the
distinctions between the PFSS and NLFFF models quantitatively. We adopted several
quantitative criteria to evaluate global non-potential coronal magnetic field models as in-
troduced in Yeates et al. (2018), and we apply these metrics in our current analysis.
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Figure 3.5: Top: EUV images (AIA 193 in the left panel and multi-channel in the right
panel) as observed 2013 February 4. Equatorial coronal holes are visible in both images.
Center and Bottom: The open field map from Figure 3.7 projected onto the Sun, with 231
degree at disk center to show it on February 4th 2013. Center left: potential field model,
center right NLFFF with resolution of two degree. Bottom left: NLFFF with resolution
of one degree. Bottom right: NLFFF with a resolution of half a degree and poles cut.

The quantities are listed in Table 3.1, where we present the result of the quantitative
analysis of the selected model’s influence, such as the model used (PFSS or NLFFF) and
the spatial resolution (ranging from 2 to 0.5 degrees). Additionally, in the same table, we
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Figure 3.6: Top: Potential field model with using spherical harmonics until l=25. Bottom:
Nonlinear force-free model with a resolution of one degree. Both models are for CR2133
and shown are a few field lines as seen 2013 February 4.
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Figure 3.7: Synoptic map of the footpoints of open magnetic field lines (positive polarity
in yellow and negative polarity in dark blue). From top to bottom: potential field with l
until 25; NLFFF with a resolution of two degree; NLFFF with a resolution of one degree;
NLFFF with high (0.5 degree) resolution, both poles are cut by 20 degree.
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Figure 3.8: Overplotted the same magnetic-field lines as in Figure 3.6 onto a coronal
multi-channel image. It is visible that the open field lines are routed in the polar regions
as well as in the equatorial coronal holes. Top: Potential field model. Bottom: NLFFF
model.
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examine the impact of extending the computations to the solar polar regions using our
new Yin-Yang code, comparing the results to those obtained from a regular finite differ-
ence spherical grid, which excludes a 20-degree range near the poles in the computational
domain. We calculate the total magnetic energy and total magnetic flux, estimating these
quantities for the solar surface and at distances of 1.1, 1.5, and 2.5 solar radii. The method-
ology employed here follows the same process as described in Yeates et al. (2018). The
magnetic energy is defined through a volume integral, while the magnetic flux is defined
through a surface integral. Therefore, the specified radii represent the location of the
spherical surfaces for the magnetic flux computation.

Car. Model poles res. Energy flux r = 1.0 flux r = 1.1 flux r = 1.5 flux r = 2.5
2133 PFSS Yes l ≤ 25 1.84 1026 J 3.13 1015 Wb 1.16 1015 Wb 4.01 1014 Wb 2.41 1014 Wb
2133 NLFFF Yes 2.0◦ 2.87 1026 J 3.09 1015 Wb 1.23 1015 Wb 4.15 1014 Wb 2.41 1014 Wb
2133 NLFFF Yes 1.0◦ 2.60 1026 J 3.13 1015 Wb 1.23 1015 Wb 4.00 1014 Wb 2.44 1014 Wb
2133 PFSS No l ≤ 25 1.79 1026 J 3.08 1015 Wb 1.08 1015 Wb 3.63 1014 Wb 2.17 1014 Wb
2133 NLFFF No 2.0◦ 2.94 1026 J 2.98 1015 Wb 1.32 1015 Wb 4.20 1014 Wb 2.19 1014 Wb
2133 NLFFF No 0.5◦ 2.58 1026 J 3.04 1015 Wb 1.40 1015 Wb 4.30 1014 Wb 2.24 1014 Wb
2222 PFSS Yes l ≤ 25 3.07 1025 J 8.39 1014 Wb 5.89 1014 Wb 4.58 1014 Wb 3.85 1014 Wb
2222 NLFFF YES 2.0◦ 3.39 1025 J 9.96 1014 Wb 6.36 1014 Wb 4.54 1014 Wb 3.85 1014 Wb
2222 PFSS No l ≤ 25 8.99 1024 J 5.89 1014 Wb 3.16 1014 Wb 2.20 1014 Wb 1.88 1014 Wb
2222 NLFFF No 2.0◦ 1.83 1025 J 6.96 1014 Wb 3.84 1014 Wb 2.24 1014 Wb 1.86 1014 Wb
2222 NLFFF No 0.5◦ 1.83 1025 J 8.81 1014 Wb 3.84 1014 Wb 2.22 1014 Wb 1.86 1014 Wb

Table 3.1: Physical quantities from the different models. The first column ’CR’ gives the
the chosen synoptic Carrington vector-magnetogram maps (‘CR’, 2133 during solar activ-
ity maximum and 2222 during solar activity minimum. The second column ‘Model’ lists
the used models, either potential field source surface model (PFSS) or nonlinear force-
free field model (NLFFF). The third column ‘Poles’: ‘Yes’ means that the entire sphere
including the polar regions was modelled and ‘No’ that 20 degree on both poles have
been cut. In the fourth column ‘Res’ either the spatial resolution for the NLFFF modeling
or the maximum number l of spherical harmonics for PFSS are given. The fifth column
provides the total integrated magnetic energy J. In column 6–9 we list the magnetic flux
‘Fl’ at different spherical shells at 1.0, 1.1, 1.5, 2.5 solar radii ‘r’, respectively.

It is evident that the energy for NLFFF is considerably higher when compared to
PFSS, whereas the differences in fluxes are smaller. This could be explained by the fact
that the magnetic energy is proportional to the square of the magnetic field while the
magnetic flux is linearly proportional to the magnetic field. Moreover, the magnetic field
becomes more and more potential with increasing height in the corona and the computed
surface integrals are not affected from the field at lower heights. In the case of the vol-
ume integral, the lower parts of the solar corona are taken into account, dominate the
volume integral, and thus introducing this higher difference between the potential and
force-free energy. In the case of CR2133, the effects of resolution are minimal, and in-
cluding or excluding the polar regions only has a moderate impact on the global magnetic
field structure. This can be attributed to the fact that the majority of the magnetic flux is
concentrated in the active regions, which are located closer to the equator. However, as
we will observe later, this scenario is significantly different for CR2222 observed during
solar activity minimum, where the flux in polar regions has a more profound impact on
the global magnetic field in the solar corona.
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In Figure 3.7, we present the results of investigating another significant feature: the
footpoints of open magnetic field lines in the photosphere, depicted on a synoptic map.
The top panel shows the results obtained from the PFSS model, while the subsequent
panels showcase the NLFFF model with varying spatial resolution. The second-from-top
panel displays the NLFFF model with a polar region at a resolution of 2.0 degrees, fol-
lowed by the third-from-top panel representing a resolution of 1.0 degrees. The bottom
panel illustrates the NLFFF model with poles cut at a resolution of 0.5 degrees. While the
general location of the footpoints appears similar across all models, there are notable dif-
ferences in detail. The footpoint locations derived from higher-resolution NLFFF models
are slightly larger and exhibit greater complexity compared to those obtained from PFSS.
In all models, the footpoints along the equator align with the positions of coronal holes
observed in coronal images. Naturally, in the experiment where the poles are excluded,
the large polar coronal hole in the south, which is visible in the top three panels, is not
found.

Moving back to Figure 3.5, we project the synoptic open field maps onto the sun and
compare them with the locations of the coronal holes. The results show that the open field
lines are well rooted within the coronal holes. Finally, Figure 3.8 presents a multi-channel
image with a selection of field lines overlaid on it (top for PFSS and bottom for NLFFF).
This again confirms that open field lines are rooted in the coronal hole regions.

3.3.2 Solar activity minimum (CR2222)
In Figure 3.9, we project the radial component of the synoptic map onto the surface of
the Sun as seen 2019 September 25. Furthermore, Figure 3.10 presents in the top left
panel an AIA 193 image, along with a top right panel showcasing a multi-channel image
constructed from quasi-temporal images. These images vividly display a large polar coro-
nal hole located at the north pole, extending across a significant portion of the equatorial
region.

Figure 3.11 shows in the top and bottom panel a few selected field lines for a PFSS
and NLFFF model, respectively. Compared with the solar activity maximum case seen in
Figure 3.6 the magnetic field structure in minimum is much less complex and the large
scale structure depicts mainly a dipole. In Table 3.1 we investigate the same quantities
as for the maximum case. The results are, however, very different. Here it makes a large
difference if we include or exclude the polar regions. This is no surprise, however, because
of the large amount of flux seen in the polar regions in the synoptic map. Consequently
there is about a factor of two differences in the magnetic energy and magnetic fluxes if we
include or exclude the polar regions. The magnetic energy of NLFFF is only about 10%
higher compared with PFSS for the full sphere case. This is also no surprise, because
free magnetic energy is mainly stored in active regions, which are absent during activity
minimum.

Figure 3.12 illustrates the synoptic maps displaying the footpoints of open magnetic
field lines. In the top panel, we observe the results obtained from a PFSS model, while
the second panel showcases the findings from an NLFFF model that includes both po-
lar regions. Both models successfully capture the presence of the polar coronal holes.
However, for an unknown reason, the footpoints of the equatorial extension of the hole
are not depicted in these panels. Interestingly, when we exclude the polar regions, as
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Figure 3.9: Br component of the synoptic vector map projected onto the Sun with an angle
of 270◦. This corresponds to the Sun as seen 2019 September 25. The synoptic has the
resolution of half a degree, as used for the boundary condition of the NLFFF code (720
pixel in ϕ and 280 pixel in θ for the whole sphere, where the polar regions have been cut
by 20 degrees).

demonstrated in the third panel and the bottom panel with varying spatial resolutions,
the footpoints of the equatorial hole become clearly visible. We are currently unable to
comprehend the underlying reasons behind this particular result and further investigation
is required to gain a better understanding. The first possible reason to explain the inabil-
ity of the correct description of the coronal whole when the polar regions are included
is the quality of the vector field measurements at the solar poles. For line-of-sight mag-
netograms Gosain et al. (2013) shows that there are higher errors in higher latitudes. In
Centeno et al. (2023) the authors create synthetic magnetic fields on the solar poles and
then use the inversion algorithm to study how well they can retrieve the synthetic field.

The inversions undercount the pixels lacking any Line-Of-Sight (LOS) field compo-
nent. They also extract more potent transverse fields than those actually present in the
simulation. the count of purely transverse fields, which are those at an angle of 90 de-
grees is significantly misjudged. Finally, they overestimate the number of pixels where
the transverse component aligns with the foreshortening direction, meaning at angles of
either 0 degrees or 180 degrees. When observing the solar magnetic field at the poles
from Earth, foreshortening occurs because we’re viewing these regions at an oblique an-
gle. This could lead to an overestimation of the pixels where the transverse (perpendicular
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3 Using observed synoptic magnetograms as boundary conditions during solar
minimum and maximum

Figure 3.10: Top: Two images (left: AIA 193 and right: multi-channel) taken 2019
September 25. Middle: The open field map from Figure 3.12 projected onto the Sun,
with 270 degree to show it 2019 September 25. The left map was done with a potential
field model and the right with a NLFFF model and 2 degree resolution. Bottom left: a
NLFFF model with poles cut and 2 degree resolution. Bottom right: NLFFF model with
half degree resolution and poles cut.

to Earth-Sun line) component of the magnetic field aligns with the direction of foreshort-
ening. In our computations we use a weighting functions/mask for the transverse com-
ponent of the magnetic field that is trusting more the stronger fields. When working with
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3.3 Results

Figure 3.11: Top: Potential field model with max l = 25. Bottom: NLFFF model with
two degree resolution. Both models are for CR2222 with overplotted the same number of
field lines as seen at 2019 September 25.
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3 Using observed synoptic magnetograms as boundary conditions during solar
minimum and maximum

Figure 3.12: Synoptic map of the footpoints of open magnetic field lines for solar activity
minimum CR2222 (positive polarity in yellow and negative polarity in dark blue). From
top to bottom: Based on potential field extrapolations; Full sphere NLFFF with a 2 degree
resolution; NLFFF with poles cut 2 degree resolution; Resolution of half degree and poles
cut.
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3.3 Results

the regions of the sun close to the equator, the transverse field to the line-of-sight and
the transverse field to the radial direction are basically the same direction. When moving
away of the equator and closer to the poles these two directions start deviate the one from
the other. Therefore, although this definition of the mask was suitable for the codes that
did not include the polar regions their definition should probably adapted to reflect the
reduced reliability of the data towards the polar regions.

Moving on to Figure 3.13, we superimpose open magnetic field lines onto a multi-
channel image of the solar corona. The top panel of the figure shows results from a low-
resolution NLFFF model, which includes the polar regions. This visualization reveals
both polar coronal holes as well as an open field line within the equatorial coronal hole.
Contrastingly, the bottom panel presents high-resolution NLFFF results, where the polar
regions have been excluded. As one might expect, this model does not capture the polar
holes. However, it does indicate a greater amount of open field in the vicinity of the
observed equatorial hole. Our conclusion from these comparisons is that the problematic
polar magnetic field data when included in the boundary conditions negatively affect the
quality of the solution.

Back to Figure 3.10 (middle and bottom rows), we project the synoptic maps onto a
representation of the Sun as observed 2019 September 25. The most noticeable feature
from this projection is that the runs without inclusion of the polar region are capable of
reconstructing an equatorial hole. There is a slight shift in the footpoints relative to the
hole observed in the images, which is an aspect requiring further investigation. However,
the runs that consider the full sphere do not manifest this feature.
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3 Using observed synoptic magnetograms as boundary conditions during solar
minimum and maximum

Figure 3.13: Open magnetic field lines plotted onto a multi-color EUV image. Top: a
full sphere NLFFF model including the poles (resolution 2 degree) and Bottom: a NLFFF
model with polar regions cut (resolution half a degree). The full NLFFF run outlines well
the polar coronal holes and shows one open field line in the equatorial hole. The run
with poles cut shows more field lines in equatorial regions, but does not catch the polar
magnetic-field lines.
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4 Conclusions

4.1 Overview

This thesis introduces a new numerical code capable of reconstructing the coronal mag-
netic field under the non-linear force-free approximation. A unique attribute of this code
lies in its implementation on a Yin-Yang grid, which allows for the incorporation of solar
poles in the calculations, a task only one other existing code can currently accomplish,
see Jing et al. (2013).

Our model’s validity was established by using a non-linear force-free semi-analytical
solution known as ‘the Low and Lou solution’. We extracted synthetic boundary condi-
tions from this benchmark solution and then compared our reconstructed 3D magnetic
field with the semi-analytical solution as outlined in detail in Chapter 2. The success of
this validation provided the impetus for us to apply observed magnetograms as boundary
conditions to our model, thus enabling the reconstruction of the field for a more realistic
scenario.

To accomplish this, it was necessary to augment the numerical model so as to be able
to manage inconsistent and noisy boundary conditions. Despite these challenges, our
code exhibited exceptional performance when the generated field lines are compared to
observed coronal structures.

This research represents a pioneering effort in extrapolating the solar magnetic field
in the solar corona, particularly as it incorporates the polar regions within the computa-
tional domain, something prior computations of force-free fields from measured vector
magnetograms did not attempt. While magnetic-field data from polar regions pose certain
challenges, our study demonstrates that during solar maximum activity phase (CR2133)
when the majority of the magnetic flux is concentrated outside the polar regions, the
reconstructed field accurately replicates the locations of the coronal holes and coronal
loops. However, during solar minimum activity (CR2222), when significant flux is lo-
cated within the polar regions, the data quality has a more substantial impact on the re-
constructed field, leading to a discrepancy with the observed field.

The Solar Orbiter mission (see Forveille and Shore 2020) will provide more reliable
measurements for the magnetic field on the photosphere at the solar poles thereby sup-
plying us with complimentary data for the HMI synoptic vector maps that can be used to
‘fill’ the polar regions.
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4 Conclusions

4.2 New directions of research

The successful implementation of the non-linear force-free optimization code on a Yin-
Yang grid is promising for advancements concerning not only the global modeling of the
corona, but of the heliosphere as well. The focus of the current research was selected to
be the force-free fields because the force-free approximation stands a complexity level
above the widely used Potential Source Surface model. Our examination of large-scale
structures suggests that the force-free approximation is adequate for encapsulating these
features. A significant distinction between our model and the potential field model lies
in the capability of the force-free scenario to calculate the magnetic free energy, a crucial
physical quantity in the corona. The Potential Field Source Surface model, despite its
simplicity, is widely adopted as a boundary condition for computational models of the
outer corona and the heliosphere. It is even utilized in some of the most cutting-edge
numerical models for space weather prediction, such as the European Heliospheric Fore-
casting Information Asset (EUHFORIA) (see Wang et al. 2018). However, the use of a
simplistic model like the potential field source surface model can have implications on the
quality of the model built upon it. This fact is highlighted in Koukras et al. (2022), which
underscores the significance of the magnetic field structure when back-mapping the fast
solar wind.

Our code, with its proven capability to accurately reproduce the location of open and
closed field lines in the solar corona, could serve as a model for various purposes. For
instance, it could be used for setting initial conditions in time-dependent models like EU-
HFORIA. Additionally, it could be a valuable tool in the identification and back-mapping
of the solar wind. As such, our code offers a promising approach in improving the quality
and accuracy of predictive space weather models.

A future iteration of this numerical model could be advanced further by incorporating
not only a Yin-Yang grid but also a non-uniform grid. This modification could be partic-
ularly beneficial in modeling active regions with higher spatial resolution. The observed
magnetic field in the active regions is stronger and thus the component of the magnetic
field vertical to the line of sight is more reliable. Therefore, the regions with higher mag-
netic field can be modeled with higher spatial resolution enabling us to perform a better
reconstruction of the coronal loops within the active regions. This more detailed recon-
struction could also be utilized for the one-to-one comparison of the loops reconstructed
by our code with the ones found in observations. In cases where more than one instru-
ments are observing, the same active region stereoscopy could be an additional tool to
extract the 3D structure of the observed loops like in Wiegelmann and Neukirch (2002)
thus enabling a more rigorous comparison. On the contrary, in the quiet Sun, where the
magnetic fields at the photosphere is much weaker and the signal-to-noise ratio for the
vertical to the line-of-sight component is very low, a very high resolution is probably not
so beneficial for using it as boundary condition for global coronal magnetic field mod-
els. Therefore, this feature of being able to select the appropriate resolution depending on
the data reliability, makes the implementation of a non-uniform spatial grid a promising
approach. Our code utilizes a line search gradient descent algorithm as the optimization
algorithm. While this algorithm has shown success in minimizing the objective func-
tional L, it is worth exploring other optimization algorithms, as discussed in Section 1.6.
Several of these algorithms have gained popularity in the field of machine learning and
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4.2 New directions of research

artificial intelligence for their ability to achieve faster convergence across various types
of objective functions.

To enhance the efficiency of our code and further minimize the objective function
within the parameter space, it would be interesting to investigate the utilization of more
advanced algorithms. This avenue of research could potentially lead to discovering that
one of these algorithm offers improved speed and better optimization results.

The use of boundary conditions that are the output of other numerical models is an-
other interesting way to possibly improve our global extrapolations. There are models that
simulate the magnetic field on the photosphere that extend their computations up to the
solar poles. For example, the flux transport models first introduced by Leighton (1964)
predict the motions of the solar magnetic fields thus being able to approximate the polar
field as well (see Yeates et al. 2023, for a recent review on flux transport models). A data
product that is publicly available is the ADAPT maps based on the model in Worden and
Harvey (2000) and described in Arge et al. (2010). The ADAPT maps do not currently in-
clude a transverse component of the magnetic field on the photosphere, but only the radial
component. Therefore, they cannot be used directly in our model. A way to overcome
this difficulty would be to use the radial field extracted from the ADAPT maps only for
the polar regions and the HMI vector magnetogram data for the rest of the computational
domain.

Another way in which our 3D full-sphere coronal field reconstruction could be uti-
lized is by providing more accurate boundary conditions for active region coronal mag-
netic field models. Because our code is using the Yin-Yang grid which effectively covers
the whole volume of the spherical shell of the solar corona there is no need for additional
boundary conditions at the lateral boundaries as is the case when the computations are
restricted to exclude the polar regions. In the case of modeling active regions, there is
the need for prescribing six surfaces both in spherical and Cartesian geometry (bottom
boundary, top boundary, and four lateral boundaries). The bottom boundary is always
chosen to be the observed magnetogram but for the other five boundaries, the potential
field is used as it is done for example in Wheatland et al. (2000). The resulting magnetic
field from our global extrapolations could be used as an alternative way to prescribe the
lateral boundaries for these models. Active regions are not isolated systems but are some-
times connected with other active regions through interconnecting coronal loops as it is
shown in Du et al. (2018). Therefore, prescribing the boundaries of the corona above an
active region using our global coronal model could lead to a more accurate reconstruction
of the active regions as well.

Our code, which leverages a line-search gradient descent algorithm to solve systems
of partial differential equations, offers the distinct advantage of expandability. In essence,
the objective or loss function can be broadened to encompass additional terms. This
terms’ minimization then aligns with the solution of further equations, augmenting the
code’s functionality.

For instance, in Wiegelmann et al. (2020), integrated terms pertain to plasma pressure
and solar wind flow into the calculations. The stationary MHD code, however, is designed
around a finite differences numerical grid, which precludes the inclusion of polar regions
in the computations.

To enhance our work, we propose incorporating the objective functional form from
Wiegelmann et al. (2020) into the Yin-Yang code. In doing so, it is feasible to include
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additional terms describing the centrifugal and Coriolis forces, thus enriching the com-
plexity and accuracy of our model.

This advancement is critical, especially for broadening the model’s scope beyond the
source surface, extending up to 10 solar radii. At this distance, the Parker Solar Probe
will be capable of providing in-situ measurements that serve to validate our computational
models. Therefore, integrating these forces can create a more comprehensive and precise
model, positioning us well for future scientific discoveries.
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